• Title/Summary/Keyword: Echo reduction

Search Result 65, Processing Time 0.021 seconds

A Study on Couplant Medium Improvement for Ultrasonic Inspection System with Water Immersion to Detect Weld Defects (용접결함 검사용 수침식초음파탐상기의 매질개선연구)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Yong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • For nondestructive inspection of electron beam (EB) welding part in automotive power transmission assembly, a pulse-echo ultrasonic testing apparatus in water immersion has been applied using the ultrasonic waves with a frequency of 10MHz. However various problems have appeared during the ultrasonic inspection, which led to some significant mistakes in automatic quality evaluation of the welding parts. Experimental study showed that the state of water couplant medium containing some amount of contaminants, rusts and anti-corrosion agents had considerable influences on the reduction of ultrasonic amplitudes during wave propagation. The amplitude reduction depending on the coupling medium state could bring about some mis-diagnoses for defects in the welding parts. The results proposed that for a reliable inspection of defects in welds the state of water medium should be kept in about 15 volume fractions (vol.%) of anti-corrosion agents and in minimized contaminants.

Feature Selection for Image Classification of Hyperion Data (Hyperion 영상의 분류를 위한 밴드 추출)

  • 한동엽;조영욱;김용일;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.170-179
    • /
    • 2003
  • In order to classify Land Use/Land Cover using multispectral images, we have to give consequence to defining proper classes and selecting training sample with higher class separability. The process of satellite hyperspectral image which has a lot of bands is difficult and time-consuming. Furthermore, classification result of hyperspectral image with noise is often worse than that of a multispectral image. When selecting training fields according to the signatures in the study area, it is difficult to calculate covariance matrix in some clusters with pixels less than the number of bands. Therefore in this paper we presented an overview of feature extraction methods for classification of Hyperion data and examined effectiveness of feature extraction through the accuracy assesment of classified image. Also we evaluated the classification accuracy of optimal meaningful features by class separation distance, which is also a method for band reduction. As a result, the classification accuracies of feature-extracted image and original image are similar regardless of classifiers. But the number of bands used and computing time were reduced. The classifiers such as MLC, SAM and ECHO were used.

Reduction of Susceptibility Effect Using Frequency Modulation DANTE (주파수 변조 DANTE를 이용한 자화율 효과의 감소)

  • Chung, S.T.;Hong, I.K.;Kim, J.H.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.167-170
    • /
    • 1995
  • An frequency modulated (FM) DANTE pulse sequence generates a quadratic phase toward the transverse of image by an FM RF pulse. In the image of a serious susceptibility effect, the phase due to the difference of the susceptibility in the pixel occurs susceptibility error which arise signal loss. But the signal loss due to the susceptibility effect in the pixel is reduced when the quadratic phase adds in the pixel. In this paper, we have generated a quadratic function toward the transverse (X-Y) using FM DANTE sequence and the susceptibility effect is reduced in the gradient echo (GE) imaging. Computer simulation and experimental results is obtained by using a whole-body KAIS 2.0T NMR system.

  • PDF

Pre-Echo Reduction Using Time Domain Energy Companding (시간 영역 에너지 Companding을 사용한 프리 에코 감소 방법)

  • Kim, Jaewon;Lim, Yujin;Yu, Jeongchan;Seo, Eunmi;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.61-62
    • /
    • 2022
  • 본 논문에서는 시간 영역 에너지의 companding을 이용하여 오디오 부호화에서 발생하는 프리 에코를 효과적으로 감소시키는 방법을 제안한다. 일반적으로 오디오 부호화는 블록 단위의 변환 부호화를 사용하므로 과도 구간에서 프리 에코를 발생시킨다. 프리 에코를 줄이기 위한 기존 TNS 방법은 주파수 영역에서 선형 예측 방법을 사용하며, 부가 정보 전송이 필요하고 성능이 낮은 문제점을 가진다. 제안하는 방법은 시간 영역 에너지의 동적 범위를 감소시킨 후 부호화 하고, 복호화 이후에 에너지를 복원하는 과정을 통하여 양자화 오차의 시간 영역 에너지 분포를 조정하여 프리 에코를 감소시킨다. 제안하는 방법이 TNS보다 우수한 프리 에코 감소 성능을 가지는 것을 확인하였다.

  • PDF

A convergence analysis of Block MADF algorithm for adaptive noise reduction

  • Min, Seung-gi;Young Huh;Yoon, Dal-hwan
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.377-380
    • /
    • 2002
  • When it calculates the optimum price of filter coefficient, the many operation quantity is necessary. Is like that the real-time control is difficult and the hardware embodiment expense is big. The case which does not know advance information of input signal or the case where the statistical nature changes with change of surroundings environment is necessary the adaptive filter. Every hour to change a coefficient automatically and system in order to reach to the condition of optimum oneself, the fact that is the adaptive filter. When it does not the quality of input signal or it does not know the environment of surroundings every hour changing, it does not emit not to be, in order to collect, the fact that is the adaptive filter. The case of the Acoustic Echo Canceler does thousands filter coefficients in necessity. It reduces a many calculation quantity to respect, it uses the IIR filter from hour territory. Also it uses the block adaptive filter which has a block input signal and a block output signal. The former there is a weak point where the stability discrimination is always demanded. Consequently, The block adaptive filter is researched plentifully. This dissertation planned the block MADF adaptive filter used to MADf algorithm.

  • PDF

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Usefulness of Acoustic Noise Reduction in Brain MRI Using Quiet-T2 (뇌 자기공명영상에서 Quiet-T2 기법을 이용한 소음감소의 유용성)

  • Lee, SeJy;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-$T_2$ and $T_2$ sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-$T_2$ and $T_2$ was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-$T_2$, $T_2$ and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-$T_2$ and $T_2$. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by $15dB_A$ and $10dB_A$ on $T_2$ and Q-$T_2$ test. Also, the average value of heartbeat rate was lower in Q-$T_2$ for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-$T_2$. According to the qualitative analysis, the overall quality image of 59 case $T_2$ and Q-$T_2$ was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-$T_2$ is a promising technique for acoustic noise reduction and improved patient comfort.

Metabolic Changes in Patients with Parkinson's Disease after Stereotactic Neurosurgery by Follow-up 1H MR Spectroscopy

  • Choe, Bo-Young;Baik, Hyun-Man;Chun, Shin-Soo;Son, Byung-Chul;Kim, Moon-Chan;Kim, Bum-Soo;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • Authors investigated neuronal changes of local cellular metabolism in the cerebral lesions of Parkinsonian symptomatic side between before and after stereotactic neurosurgery by follow-up 1H magnetic resonance spectroscopy (MRS). Patients with Parkinson's disease (PD) (n = 15) and age-matched normal controls (n = 15) underwen MRS examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2${\times}$2${\times}$2 ㎤ (8ml) volume of interest in the regions of substantia nigra, thalamus, and lentiform nucleus. Spectral parameters were 20 ms TE, 2000 ms TR, 128 averages,2500 Hz spectral width, and 2048 data points. Raw data were processed by the SAGE data analysis package (GE Medical Systems). Peak areas of N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum (Glx) of glutamate and GABA were calculated by means of fitting the spectrum to a summation of Lorentzian curves using Marquardt algorithm. After blindly processed, we evaluated neuronal alterations of observable metabolite ratios between before and after stereotactic neurosurgery using Pearson product-moment analysis (SPSS, Ver. 6.0). A significant reduction of NAA/Cho ratio was observed in the cerebral lesion in substantia nigra of PD patient related to the symptomatic side after neurosurgery (P : 0.03). In thalamus, NAA/Cho ratio was also significantly decreased in the cerebral lesion including the electrode-surgical region (P : 0.03). A significant reduction of NAA/Cho ratio in lentiform nucleus was not oberved, but tended toward significant reduction after neurosurgery (P = 0.08). In particular, remarkable lactate signal was noted from the surgical thalamic lesions of 6 among 8 patients and internal segments of globus pallidus of 6 among 7 patients, respectively. Significant metabolic alterations of NAA/Cho ratio might reflect functional changes of neuropathological processes in the lesion of substantia nigra, thalamus, and lentiform nucleus, and could be a valuable finding fur evaluation of Parkinson's disease after neurosurgery. Increase of lactate signals, being remarkable in surgical lesions, could be consistent with a common consequence of neurosurgical necrosis. Thus, IH MRS could be a useful modality to evaluate the diagnostic and prognostic implications fur Parkinsons disease after functional neurosurgery.

  • PDF

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.