• Title/Summary/Keyword: Eccentric loads

Search Result 85, Processing Time 0.024 seconds

Experimental Study on Secondary Moment of High-Strength RC Slender Columns under Eccentric Loads (편심을 받는 고강도콘크리트 장주의 2차모멘트에 관한 실험적 연구)

  • 박동규;배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.571-576
    • /
    • 1998
  • This paper is a part of a research plan aimed at the verification of basic design rules of high-strength concrete columns. A total of 19 slender column specimens were tested to measure secondary moment and stiffness of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356kg/$\textrm{cm}^2$ to 951kg/$\textrm{cm}^2$, the longitudinal steel ratios were between 1.13% and 5.51%, and slenderness ratios were 40 and 61. Calculated moment magnification factors and column stiffness based on design codes are higher than the test results for high axial load under small eccentricity, for higher slenderness ratio, for lower longitudinal steel ratio, and for high-strength concrete. The moment magnification method of the current design codes may provide a very conservative design for high-strength concrete slender column.

  • PDF

Transient Analysis of Composite Cylindrical Shells with Ring Stiffeners (링보강 복합재료 원통셸의 과도해석)

  • Kim, Yeong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1802-1812
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure Loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The results are verified by comparison with FEM results.

Transient Response of Composite Cylindrical Shells with Ring Stiffeners (링보강 복합재료 원통셸의 과도응답)

  • Kim, Young-Wann;Chung, Kang;Park, Kyung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.883-888
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The theoretical results are verified by comparison with FEM results.

  • PDF

Vibration Analysis of Rotor System for Rotary Compressor (로터리 컴프레서의 축계 진동해석)

  • 정의봉;김태학;이현욱;박영도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.260-265
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the difference in pressure between compression and suction gases6 Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. In this paper, the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results. The location of balancer weight are suggested for reducing rotor whiring displacement.

  • PDF

Structural Performance of Retrofitted Reinforced Concrete Walls (보강된 철근콘크리트 벽체의 구조적 성능)

  • Shin, Yeong-Soo;Hong, Gi-Suop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.212-222
    • /
    • 1998
  • In several structural problems, the low concrete strength of compression members has the severest influence on the structural safety. However, the repairing and strengthening techniques for compression members are not established and evaluated. This study aimed to develop and evaluate the rehabilitation techniques to obtain proper structural strength of wall with low concrete strength. The specimens with low strength of concrete were retrofitted with commonly using section increase method and epoxy bonded glass fiber techniques. The tests were executed to failure under concentric and eccentric loads. In this paper, the structural behavior and failure modes were investigated to evaluate the strengthening effects of walls subjected to compression and out-of-plane bending.

  • PDF

The Analysis of Prying Action for Equipment Anchor System. (기기 기초 시스템의 지렛대 효과 해석)

  • 김강식;유원진;김갑순;서용표
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.83-90
    • /
    • 2002
  • Prying action caused by the eccentric loads within the equipment itself and the anchors can result in a lack of adequate stiffness and strength within the equipment and in additional moment loadings on the anchors. A typical case of prying action often found in power plants is the angle type anchorage system with expansion bolt. Experimental and analytical studies were performed to investigate the relationship between the amplification factors and various geometrical and material factors. It is revealed that the value of the factor is effected by the stiffness of bolt and angle, lateral stiffness of cabinet, and geometrical parameter of anchor system.

  • PDF

Buckling behavior of stainless steel square hollow columns under eccentric loadings

  • Jang, Ho-Ju;Seo, Seong-Yeon;Yang, Young-Sung
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.563-577
    • /
    • 2006
  • This study involves a series of experiments on the buckling strength of eccentrically compressed cold-formed stainless steel square hollow-section columns. The principal parameters in this study are slenderness ratios ($L_k/r$ = 30, 50, 70) and magnitude of eccentricity e (0, 25, 50, 75, 100 mm) on the symmetrical end-moment. The objectives of this paper are to obtain the buckling loads by conducting a series of experiments and to compare the behavior of the eccentrically compressed cold-formed stainless steel square hollow-section columns with the results of the analysis. The ultimate buckling strength of the square-section members were determined with the use of a numerical method in accordance with the bending moment-axial force (M-P) interaction curves. The behavior of each specimen was displayed in the form of a moment-radian (M-${\theta}$) relationship. The numerically obtained ultimate-buckling interaction curves of the beam columns coincided with the results of the experiments.

Dynamic Analysis of Rotary Compressor with Rotor Misaligment (축어긋남을 갖는 로터리 컴프레서의 동적해석)

  • 정의봉;김태학
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF

Effect of load eccentricity on buckling behavior of FRP composite columns with open and closed cross sections

  • M Kasiviswanathan;M Anbarasu
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.61-76
    • /
    • 2023
  • Fiber reinforced polymer (FRP) columns are increasingly being used in various engineering fields due to its high strength to weight ratio and corrosion resistance. Being a thin-walled structure, their designs are often governed by buckling.Buckling strength depends on state of stress of elements which is greatly influence by stacking sequence and various inaccuracies such as geometric imperfections and imperfections due to eccentricity of compressive load and non-uniform boundary conditions. In the present work, influence of load eccentricity on buckling strength of FRP column has been investigated by conducting parametric study. Numerical analyses were carried out by using finite element software ABAQUS. The finite element (FE) model was validated using experimental results from the literature, which demonstrated good agreement in terms of failure loads and deformed shapes.The influence of load eccentricity on buckling behavior is discussed with the help of developed graphs.

Seismic Performance of Replaceable Steel Brace System Subjected to Combined Loadings (복합하중을 고려한 교체 가능한 강재 브레이스 시스템의 내진성능)

  • Ro Kyong Min;Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.43-50
    • /
    • 2023
  • This study aims to assess the seismic performance of retrofitted reinforced concrete columns using a Replaceable Steel Brace (RSB) system, subjected to combined axial, lateral, and torsional loadings. Through experimental testing, one non-retrofitted concrete column specimen and two retrofitted specimens with variable sliding slot lengths were subjected to eccentric lateral loads to simulate realistic seismic loading. The retrofitted specimens with RSBs exhibited enhanced resistance against shear cracking, effective torsional resistance, and demonstrated the feasibility of easy replacement. The RSB system substantially improved seismic performance, achieving approximately 1.7 times higher load capacity and 3.5 times greater energy dissipation compared to non-retrofitted column, thus validating its efficacy under combined loading conditions.