• Title/Summary/Keyword: Earthquake level

Search Result 688, Processing Time 0.023 seconds

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010) (지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진))

  • Lee, Soo-Hyoung;Hamm, Se-Yeong;Ha, Kyoo-Chul;Kim, Yong-Cheol;Cheong, Beom-Keun;Ko, Kyung-Seok;Koh, Gi-Won;Kim, Gee-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.41-51
    • /
    • 2011
  • This study was conducted to investigate the relationship between groundwater level change and a large earthquake using the data of groundwater and seawater intrusion monitoring wells in Jeju Island. Groundwater level data from 13 observation wells were analyzed with a large earthquake. The Earthquake occurred at Sumatra, Indonesia (Mw = 7.7) on 13 June 2010, and groundwater level anomalies which seems to be related to the Earthquake were found in 6 monitoring wells. They lasted for approximately 16~27 minutes and the range of groundwater level fluctuations were about 1.4~2.4 cm. Coefficient of determination values for relationship between groundwater level change and transmissivity, and response time were calculated to be $R^2$ = 0.76 and $R^2$ = 0.96, respectively. The study also indicates that the high transmissivity of aquifer showed the high goundwater level changes and longer response time.

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

Domestic earthquake prediction using bayesian approach (베이지안 기법을 이용한 국내 지진 사고 예측)

  • Yang, Hee-Joong
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.119-125
    • /
    • 2009
  • We predict the earthquake rate in Korea following Bayesian approach. We make a model that can utilize the data to predict other levels of earthquake. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for earthquake occurrence rate and probabilities to escalating to more severe earthquakes are assumed and likelihood of number of earthquake in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We find that the minor level of earthquake is increasing while major level of earthquake is less likely.

Dynamic Analysis of Base-Isolated Low-level Structures Under Earthquake Excitation (지진시 저층건물 면진구조의 동적 거동해석)

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Kye-Soo, Kim
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.448-453
    • /
    • 2001
  • This paper presents an analytical evaluation of the effect of motion on seismic responses of base isolated low-level building and experimental studies to evaluate isolation performances of a rubber bearing. Dynamic responses induced by earthquake were evaluated by response analyses, taking the rubber bearing of the base isolation devices into account. In the experiment, vibration tests were carried out using a model for rubber bearings as isolation devices against earthquake in order to investigate the isolation performances of the rubber bearings. Several kinds of rubber bearing for base isolated low-level building against earthquake are examined. As a result, it is shown that the effect of the motion on the response of the building and the base response is well controlled from a seismic design standpoint.

  • PDF

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Post-earthquake fire performance-based behavior of reinforced concrete structures

  • Behnama, Behrouz;Ronagh, Hamid R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.379-394
    • /
    • 2013
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings damaged partially as a result of prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Immediate Occupancy, Life Safety and Collapse Prevention performance levels of structures, designed to the ACI 318-08 code, after they are subjected to an earthquake level with PGA of 0.35g. This investigation is followed by a fire analysis of the damaged structures, examining the time taken for the damaged structures to collapse. As a point of reference, a fire analysis is also performed for undamaged structures and before the occurrence of earthquake. The results indicate that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show that the damaging effects of post-earthquake fire are exacerbated when initiated from the second and third floor. Whilst the investigation is made for a certain class of structures (conventional buildings, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post-earthquake fire into the process of analysis and design, and provides some quantitative measures on the level of associated effects.

Evaluation of the seismic Capacity of Existing Concrete Gravity Dams (기존 콘크리트 증력식 댐 내진성능 평가)

  • 소진호;김용곤;정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.216-223
    • /
    • 2001
  • The necessity of the seismic capacity evaluation of existing concrete gravity dams i: through the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. In this study, the method seismic capacity evaluation of existing concrete gravity dams in U.S. A., Japan and Canada reviewed, applied them to the concrete gravity dam in use. Evaluation of the seismic ca approach using three levels that are level 1 - Screening, level 2 - Pseudostatic Metho level 3 - Dynamic Analysis, Method.

  • PDF

Development of a Seismic Damage Assessment Program for NPP Containment Structure (원전격납건물 지진피해평가 프로그램 개발)

  • 고현무;신현목;최강룡;정대열;현창헌;조호현;김태훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.118-125
    • /
    • 2003
  • Seismic damage assessment program for containment structure is developed. The program has been established through the combination of inelastic seismic analysis program and 3-D animation program. Damage indices at finite element level and structural level have been introduced for the seismic damage assessment. The seismic damage assessment program makes it possible to analyze in real-time the actual resistance capacity and damage level of containment structure. It will be expected that the program enables to establish the measures more quickly under the earthquake event.

  • PDF