• Title/Summary/Keyword: Earth-volume

Search Result 388, Processing Time 0.026 seconds

Characterization of Chemical Properties of Precipitation at Busan, Korea, 2009 (2009년 부산지역 강수의 화학적 특성)

  • Jung, Woon-Seon;Park, Sung-Hwa;Kang, Deok-Du;Lee, Dong-In;Kim, Dongchul
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.69-79
    • /
    • 2014
  • The seasonal variation of pH and ion components in precipitation were investigated from January to December 2009 at Busan, Korea. The precipitation was acidic with a volume-weighted mean pH concentration of 5.32, which ranged from 3.79 to 8.66. The volume-weighted mean conductivity showed 86.77 ${\mu}S/cm$ and indicated higher concentration about 96.69 ${\mu}S/cm$ in summer. The volume-weighted mean equivalent concentration of components followed the order: $K^+$ > $Ca^{2+}$ > $nss-Ca^{2+}$ > $NH_4^+$ > $Mg^{2+}$ > $Na^+$ > $Li^+$ in cations and $Cl^-$ > $SO_4^{2-}$ > $nss-SO_4^{2-}$ > $NO_3^-$ > $NO^{2-}$ > $F^-$ > $Br^-$ in anions. Particularly, concentration of $K^+$ and $Cl^-$ showed 56 and 78 % in cations and anions. The higher concentration in $K^+$, $Na^+$, $Mg^{2+}$ and $Cl^-$ were shown in Busan city as compared to the other cities. The neutralization factors have been found to have higher value for potassium ion in winter compared with different seasons, indicating significant neutralization of acidic components over the region by potassium. Therefore, the precipitation characteristics at Busan had both continental and coastal as consequence of pH, conductivity and ionic analyses.

A Study on the Selection of key Enabling Technologies for Automation of Real-time Ground Shape Recognition and Soil Volume Estimation (실시간 지반형상 인식 및 토공량 자동 산출을 위한 요소기술 선정방안에 관한 연구)

  • Yu, Byung-In;Ahn, Ji-Sung;Oh, Se-Wook;Han, Seung-Woo;Kim, Young-Suk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.347-352
    • /
    • 2007
  • Recently, automated construction machines have been developed for technically solving construction industry problems such as labor, productivity, quality and the profit decrease. In domestic construction industry, a research for developing an intelligent excavation robot has been performed. The primary objective of this research is to analysis state-of-the art technologies in order to recognize local ground shape in real-time and compute soil volume of earth moving. This research analyzed five elemental technologies for 3D modeling of local ground shape and selected an optimal technology among the five technologies through using AHP method. It is anticipated that the optimal technology selected for 3D modeling of local ground shape can be effectively used to develop the intelligent excavation robot.

  • PDF

Study on the Hae Ron of the Young Chu (령추(靈樞)${\cdot}$해론(海論)에 대한 연구)

  • Jeong, Dong-Su;Jeong, Heon-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1451-1458
    • /
    • 2006
  • Hae Ron(海論) was recorded to Tae So(太素)‘s volume 5 Sa-hae-hap(四海合), Gap Eul(甲乙)’s volume 1 chapter 8 Sahae(四海) and You Gyeong(類經)‘s volume 9 Gyung-lak-ryu-sam-sib-yi(經絡類三十二) Yin-ji-sa-hae(人之四海). Human body has the Sahae(四海; Gi hae, Heul hae, Sugok hae, Su hae) as like as Earth has Sahae(四海; East sea, West sea, South sea, North sea). Person's Sahae corresponds with Earth's Sahae. This chapter is explaining about Acupoint's position that Sahae's Gi-hyeol 氣血) comes in and go out, symptoms of disease, that can appear When Sahae lost homeostasis and the treatment principle, Yeong-wi-gi-hyeo(營衛氣血) enables complex vital phenomenon of human body. This Yeong-wi-gi-hyeo(營衛氣血) can not move if there is no systematic O-jang yuk-bu(五臟六腑), Sip-yi-gyeong-maek (十二經脈)) and Gi-gyeong-pal-maek (奇經八脈). For these system batch, it is Sahae do most important part. Sahae is synthetic and systematic concept. This chapter is explaining the position and function. Together, This chapter is presenting symptoms and treatment principle that can appear when Sahae overbalanced. This is offering important clue in Korean medicine physiology and pathology phenomeno study. Therefore, I gathers and compares and analyzed commentese of several doctors to grasp difinitely this chapter's contents, and also investigated and translated.

Observation, Experiment, and Analysis of the Ice Spikes Formation (솟는 고드름의 형성과정에 관한 관찰, 실험 및 분석)

  • Yoon, Ma-Byong;Kim, Hee-Soo;Son, Jeong-Ho;Yang, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.454-463
    • /
    • 2009
  • In this study, from January 2006 to February 2009, we observed 107 ice spikes formed in a natural state, and analyzed their environment. We developed an experimental device to reproduce ice spikes in laboratory and successfully made 531 ice spikes. We analyzed the process of the formation and the principle of how those ice spikes grow through videotaped data of the formation in the experiment. In the natural world, when the surface of water and the lower part of a vessel begin to freeze, a vent (breathing hole) develops at the surface where an ice is not frozen; this vent serves as the seed of an ice spike. It is assumed that the volume expansion of ice in the vessel which occurs when water freezes makes the supercooled water go upward through the vent and becomes an ice bar called an ice spike. In the laboratory, however, when distilled water is poured into an ice tray cube and kept in the experimental device for about one and a half hours at a temperature of -12- $-13^{\circ}C$, a thin layer of ice then begins to develop on the surface of the water, the vent is formed, and ice spikes form for about 10-30 minutes. These spikes stop growing when the end becomes clogged. Ice spikes can be described as falling into seven categories of shape, with the apex type topping the list followed by the slant type in the natural state and the vertical type predominating in the laboratory.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.

Experiment of Computation of Ground Cutting Volume Using Terrestrial LiDAR Data (지상 LiDAR 자료의 절토량 산정 실험)

  • Kim, Jong-Hwa;Pyeon, Mu-Wook;Kim, Sang-Kuk;Hwang, Yeon-Soo;Kang, Nam-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • Terrestrial LiDAR can measure high capacity 3D-topography coordinates and try to apply to various public works such as tunnel surveying, facility deformation surveying. This experiment is about how to calculate ground cutting volume because the stage of the earth work spend lots of money and time among civil engineering works. Surveying cutting area using Terrestrial LiDAR and then calculating cutting area in planned area comparing sectional plan before construction and planned section and LiDAR data. Also, the values of the calculating ground cutting volume by three different resolution LiDAR has are compared and analyzed.

  • PDF

Recovery of Residual LiCl-KCl Eutectic Salts in Radioactive Rare Earth Precipitates (방사성 희토류 침전물내 잔류하는 LiCl-KCl 공융염의 회수)

  • Eun, Hee-Chul;Yang, Hee-Chul;Kim, In-Tae;Lee, Han-Soo;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.303-309
    • /
    • 2010
  • For the pyrochemical process of spent nuclear fuels, recovery of LiCl-KCl eutectic salts is needed to reduce radioactive waste volume and to recycle resource materials. This paper is about recovery of residual LiCl-KCl eutectic salts in radioactive rare earth precipitates (rare earth oxychlorides or oxides) by using a vacuum distillation process. In the vacuum distillation test apparatus, the salts in the rare earth precipitates were vaporized and were separated effectively. The separated salts were deposited in three positions of the vacuum distillation test apparatus or were collected in the filter and it is difficult to recover them. To resolve the problem, a vacuum distillation and condensation system, which is subjected to the force of a temperature gradient at a reduced pressure, was developed. In a preliminary test of the vacuum distillation/condensation recovery system, it was confirmed that it was possible to condense the vaporized salts only in the salt collector and to recover the condensed salts from the salt collector easily.

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.

Field-Induced Translation of Single Ferromagnetic and Ferrimagnetic Grain as Observed in the Chamber-type μG System

  • Kuwada, Kento;Uyeda, Chiaki;Hisayoshi, Keiji;Nagai, Hideaki;Mamiya, Mikito
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.308-310
    • /
    • 2013
  • Translation induced by the field-gradient force is being observed for a single ferromagnetic iron grain and a ferrimagnetic grain of a ferrite sample ($CuFe_2O_4$). From measurements on the translation, precise saturated magnetization of $M_S$ is possible for a single grain. The method is based on the energy conservation rule assumed for the grain during its translation and the grain is translated through a diffuse area under microgravity conditions. The results of the two materials indicate that a field-induced translation of grain bearing spontaneous moment is generally determined by a field-induced potential $-mM_SH(x)$ where m denotes the mass of sample. According to the above translations, the detection of $M_S$ is not interfered by any signals from the sample holder. The $M_S$ measurement does not require m value. By observing translations resulting from fieldinduced volume forces, the magnetization of a single grain is measurable irrespective of its size; the principle is also applicable to measuring susceptibility of diamagnetic and paramagnetic materials.