• Title/Summary/Keyword: Earth-volume

Search Result 388, Processing Time 0.03 seconds

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

Assessment of Runout Distance of Debris using the Artificial Neural Network (인공신경망을 이용한 사태물질 이동거리 산정)

  • Seo Yong-Seok;Chae Byung-Gon;Kim Won-Young;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.145-154
    • /
    • 2005
  • This study conducted to develop an assessment method of runout distance of debris flow that is a major type of landslides in Korea. In order to accomplish the objectives, this study performed detailed field survey of runout distance and laboratory soil tests using 24 landslides over three pilot sites. Based on the data of the field survey and the laboratory tests, an assessment method of runout distance was suggested using the artificial neural network. The input data for the analysis of artificial neural network are change rate of slope angle, Permeability coefficient of in-situ soil, dry density, void ratio, volume of debris and the measured runout distance. The analyzed results using the artificial neural network show low error rate of inference distributing lower than $10\%$. Some cases have $5\%$ and $2\%$ of error rates of inferences. The results can be thought as excellent teaming rates. However, it is difficult to be accepted as excellent results if it is considered with the results derived using only 24 landslide data. Therefore, more landslide data should be surveyed and analyzed to increase the confidence in the assessment results.

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

240 channel Marine Seismic Data Acquisition by Tamhae II (탐해2호의 240채널 해양탄성파 탐사자료취득)

  • Park Keun-Pil;Lee Ho-Young;Koo Nam-Hyung;Kim Kyeong-O;Kang Moo-Hee;Jang Seong-Hyung;Kim Young-Gun
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1999
  • The 3-D seismic research vessel, Tamhae II, was built to raise up the probability of the hydrocarbon discovery in the Korean continental shelf and the first test survey was completed in the East Sea. During the survey, the 240 channel 2-D marine seismic data were acquired by the Korean flag vessel for the first time. Tamhae II has been equipped with source, receiver, recording equipment, and navigation equipment as well as an onboard processing system. The source is composed of four subarrays and each subarray has six airguns. Total airgun volume is 4578 $in^3$. The receiver consists of two sets of 3 km long 240 channel streamer. In the first survey, the successful acquisition of 2-D seismic data was accomplished. From the result of the data processing, we confirmed that the high quality seismic data were acquired. For the high quality data acquisition, technology of survey design and planning, operation of vessel and equipments and systematic quality control should be developed.

  • PDF

A Study on the Development of an Evaluation System of CO2 Emission in the Production of Concrete (콘크리트 생산에 의한 CO2 배출량 평가 시스템 개발에 관한 연구)

  • Kim, Tae-Hyoung;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.787-796
    • /
    • 2010
  • The main reason of the earth global warming is $CO_2$ and the regulation about it in the whole world has been reinforced to reduce $CO_2$ emission. It is needed that we should reduce it in the process at the production of concrete generated much of $CO_2$ emission as the primary material of construction industry recognized unfriendly environment industry. Based on a concrete, this study was constructed the system to evaluate $CO_2$ emission generated in the stage of material production, transportation, manufacture and developed the program to reduce and evaluate it efficiently. As a result, most of $CO_2$ emission is generated in the stage of material and it is quantitatively evaluated $CO_2$ emission generated in the stage of materials, transportation and manufacture. Moreover, the evaluation system of the volume of $CO_2$ emission which has the friendly environment technology about reduction of $CO_2$ emission at each stage is suggested for quantitatively evaluation $CO_2$ emission generated in the process at the production of concrete and remicon production company could use it to evaluation $CO_2$ emission.

Acoustic Estimate of the Krill (Euphausia superba) Density between South Shetland Islands and South Orkney Islands, Antarctica, During 2002/2003 Austral Summer (음향 조사에 의한 2002/2003 하계 시기의 남극 남쉐틀랜드 군도와 남오크니섬 사이의 크릴 밀도)

  • Kang, Don-Hyung;Shin, Hyoung-Chul;Lee, Yoon-Ho;Kim, Yong-Sin;Kim, Su-Am
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.75-86
    • /
    • 2005
  • Acoustic survey for density and biomass estimate of Antarctic krill, Euphausia superba, was conducted in the large area between South Shetland Islands and South Orkney Islands, during November 30-December 30, 2002. Considering oceanographic and geographic properties, the study area was divided into six sub-regions. Acoustic system and frequency used in the survey were quantitative echo sounder (Simrad Ek 500) and 38, 120-kHz split beam transducers. In order to discriminate krill aggregations in all acoustic signal, difference of mean volume backscattering strength $({\Delta}MVBS)$ method of the two frequencies was introduced. Averaged krill density for the overall surveyed area was $23.5g/m^2$, and spatially averaged estimates of krill density were $44.9g/m^2$ (north of the South Shetland Islands), $30.3g/m^2$ (Bransfield Strait), $11.3g/m^2$ (near the Elephant Island), $13.6g/m^2$ (north of the Elephant Island), $18.1g/m^2$(between Elephant Island and South Orkney Islands) and $21.7g/m^2$(northwest of the South Orkney Islands) at each sub-area. In the two sub-regions with surveyed area, estimated krill biomass in the north of the Elephant Island was 0.315 million tones with a CV of 18.35% $(6,766mile^2)$, and between Elephant Island and South Orkey Islands was 1.26 million tones with a CV of 9.45% $(20,299mile^2)$. As a whole, the krill density in the early summer season was low level, comparing with that of January-February. This suggested that major krill swarms in the around South Shetland Islands were reached in the mid-summer seasons from western part of the Antarctic Peninsula, and the low krill density also affects the density variation of the krill between Elephant Island and South Orkney Islands.

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Urbanization on Groundwater Flow and Salt Transport in a Coastal Aquifer, Suyeong-Gu, Busan, Korea (한국 부산광역시 수영구 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 도시화의 영향 삼차원 수치 모의)

  • Cho, Hyeon-Jo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.1-18
    • /
    • 2009
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of urbanization on density-dependent groundwater flow and salt transport in a coastal aquifer system, Suyeong-Gu, Busan, Korea. A series of steady-state numerical simulations of groundwater flow and salt transport before urbanization with material properties of geologic formations, which are established by numerical modeling calibrations considering all the urbanization factors, is performed first without considering all the urbanization factors. A series of transient-state numerical simulations of groundwater flow and salt transport after urbanization is then performed considering the urbanization factors individually and all together. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that density-dependent groundwater flow, salt transport, and seawater intrusion in the coastal aquifer system are intensively and extensively impacted by the urbanization factors. Especially, these urbanization factors result in the changes of the total groundwater volume and salt mass in the coastal aquifer system. However, such impacts of each urbanization factor are not spatially uniform but locally different.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF