• Title/Summary/Keyword: Earth-Moon Transfer

Search Result 39, Processing Time 0.022 seconds

Preliminary Mission Design for a Lunar Explorer using Small Liquid Upper Stage (소형 액체상단을 이용한 달 탐사선 임무 예비설계)

  • Choi, Su-Jin;Lee, Hoonhee;Lee, Sang-Il;Lee, Seok-Hee;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Upper stage of launch vehicle mainly injects a lunar explorer from low earth orbit to the moon at a distance of 380,000 km. In foreign lunar explorer, the upper stage is separated from the explorer after the explorer is injected into the earth-moon transfer trajectory, and the lunar explorer then uses on-board propellant to carry out mid-course correction maneuvers and lunar orbit insertion maneuvers. This study describes a newly presented small liquid upper stage. Using a small liquid upper stage with a wet mass of 2.9 tonnes, the lunar explorer not only can be injected earth-moon transfer trajectory but also can be performed lunar orbit insertion. This study provides acceptable mass range of the lunar explorer and the scope of acceptable mission range also describes based on the launch from Naro Space Center.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust (등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.843-854
    • /
    • 2009
  • For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

Design of Korean Data Center for SDO

  • Choi, Seong-Hwan;Hwang, Eun-Mi;Cho, Kyung-Suk;Kim, Yeon-Han;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • NASA launched Solar Dynamics Observatory (SDO) on February 2011 in order to understand the cause of solar activities and their influences on the Earth and the near-Earth space. KASI is constructing Korean Data Center for SDO based on the letter of agreement between KASI and NASA for space weather research. SDO produces about 1.5 TB a day and its raw data amounts to about 550 TB in a year. Stanford University has been already operating the data center for scientific raw data, but there is a limit to use its data for space weather research and space weather service in real time because of network environment. Korean Data Center for SDO will provide scientific data not only to Korean institutes but also to international space weather societies. KASI has designed the data transfer system by using GLORIAD in order to get higher performance and stability. After the first construction of data transfer system and storage system in this year, we will increase the storage capacity of the data center in phases considering new developments in a storage technology and drop of their prices.

  • PDF

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

Heat Transfer Performance of Plate Type Absorber with Surfactant

  • Yoon, Jung-In;M. M. A. Sarker;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.243-251
    • /
    • 2004
  • Absorption chiller/heater can utilize the unused energy of the daily life waste heat, the industry waste heat. the solar energy and the earth energy. These can contribute to energy savings. But the absorption chiller/heater has a demerit that the size of absorption chiller/heater is larger than that of the vapor compression type based on same capacity. In this study. the experimental apparatus of an absorber is manufactured as a plate. which is newly applied in an absorber. The experimental apparatus is composed of a plate type absorber. which can increase the heat exchange area per unit volume and thus facilitating to deeply investigate more detail features instead of that done by the existing type. i.e.. horizontal tube bundle type. The characteristics of heat transfer and refrigeration capacity are studied experimentally. The absorption enhancement by using surfactant is closely examined through the experiment and comparative figures are presented in quantitative and qualitative analysis.

Performance of Innovative Prestressed Support Earth Retention System in Urban Excavation (도심지 굴착에 적용된 IPS 흙막이 구조물의 현장거동)

  • Kim Nak Kyung;Park Jong Sik;Jang Ho Joon;Han Man Yop;Kim Moon Young;Kim Sung Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.27-36
    • /
    • 2005
  • The performance of innovative prestressed support (IPS) earth retention system applied in urban excavation was presented and investigated. The IPS wales provide a high flexural stiffness to resist the bending by lateral earth pressure, and the IPS wales transfer lateral earth pressure to Corner struts. The IPS wale provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. In order to investigate applicability and stability of the IPS earth retention system, the IPS system was instrumented and was monitored during construction. The IPS system applied in urban excavation functioned successfully. The results of the field instrumentation were presented. The measured performances of the IPS earth retention system were investigated and discussed.

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF