• Title/Summary/Keyword: Earth system model

Search Result 927, Processing Time 0.033 seconds

Feasibility Study for Detecting the Tropopause Folding Turbulence Using COMS Geostationary Satellite (천리안 위성 자료를 이용한 대류권계면 접힘 난류 탐지 가능성 연구)

  • Kim, Mijeong;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • We present and discuss the Tropopause Folding Turbulence Detection (TFTD) algorithm for the Korean Communication, Ocean, Meteorological Satellite (COMS) which is originally developed for the Tropopause Folding Turbulence Product (TFTP) from the Geostationary Operational Environmental Satellite (GOES)-R. The TFTD algorithm assumes that the tropopause folding is linked to the Clear Air Turbulence (CAT), and thereby the tropopause folding areas are detected from the rapid spatial gradients of the upper tropospheric specific humidity. The Layer Averaged Specific Humidity (LASH) is used to represent the upper tropospheric specific humidity calculated using COMS $6.7{\mu}m$ water vapor channel and ERA-interim reanalysis temperature at 300, 400, and 500 hPa. The comparison of LASH with the numerical model specific humidity shows a strong negative correlation of 80% or more. We apply the single threshold, which is determined from sensitivity analysis, for cloud-clearing to overcome strong gradient of LASH at the edge of clouds. The tropopause break lines are detected from the location of strong LASH-gradient using the Canny edge detection based on the image processing technique. The tropopause folding area is defined by expanding the break lines by 2-degree positive gradient direction. The validations of COMS TFTD is performed with Pilot Reports (PIREPs) filtered out Convective Induced Turbulence (CIT) from Dec 2013 to Nov 2014 over the South Korea. The score test shows 0.49 PODy (Probability of Detection 'Yes') and 0.64 PODn (Probability of Detection 'No'). Low POD results from various kinds of CAT reported from PIREPs and the characteristics of high sensitivity in edge detection algorithm.

Landslide susceptibility mapping and validation using the GIS and Bayesian probability model in Boeun (GIS 및 원격탐사를 이용한 2002년 강릉지역 태풍 루사로 인한 산사태 연구 (II) - 확률기법을 이용한 강릉지역 산사태 취약성 분석 및 교차 검증)

  • 이명진;이사로;원중선
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.481-486
    • /
    • 2004
  • 본 연구에서는 분석된 산사태 발생원인을 근거로 산사태 발생 가능 지역에 대한 산사태 발생원인에 대한 등급값을 이용하여, 인접한 연구지역에 교차 적용하여 위험성을 평가하여 취약성도를 작성하고 산사태 피해 예방을 위한 방재 사업, 국토개발 계획 및 건설계획을 위한 기초 자료로 적용 및 활용할 수 있도록 하였다. 연구대상 지역은 여름철 집중호우시 산사태가 많이 발생하는 지역으로 정하였으며, 행정구상으로 강원도 강릉시 사천면 사기막리와 주문진읍 삼교리에 해당한다. 산사태가 발생할 수 있는 요인으로 지형도로부터 경사, 경사방향, 곡률, 수계추출을, 정밀토양도로부터 토질, 모재, 배수, 유효토심, 지형을, 임상도로부터 임상, 경급, 영급, 밀도를, 지질도로부터 암상을, Landsat TM 영상으로부터 토지이용도와 추출하여 격자화 하였으며, 아리랑1호 영상으로부터 선구조를 추출하여 l00m 간격으로 버퍼링한 후 격자화 하였다. 이렇게 구축된 산사태 발생 위치 및 발생요인 데이터베이스를 이용, Frequence ratio를 이용하여 각 요소간의 분류를 산사태와의 상관관계를 바탕으로 취약성도를 구하였다. 그리고 계산된 산사태 취약성 지수의 기존 산사태 발생을 설명하는 능력을 정량적으로 표현하기 위하여 추정능력을 계산하였다 또한 이를 교차적용 하여 산사태 취약성도를 각각의 경우에 맞게 만들었다 이러한 평가는 산사태 피해 예방을 위한 방재 사업, 국토개발 계획, 건설계획 등에 기초자료로서 적용 및 활용될 수 있다.

  • PDF

Probabilistic Evaluation of the Effect of Drought on Water Temperature in Major Stream Sections of the Nakdong River Basin (낙동강 유역 주요하천 구간에서 가뭄이 수온에 미치는 영향의 확률론적인 평가)

  • Seo, Jiyu;Won, Jeongeun;Lee, Hosun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.369-380
    • /
    • 2021
  • In this work, we analyzed the effects of drought on the water temperature (WT) of Nakdong river basin major river sections using Standardized Precipitation Index (SPI) and WT data. The analysis was carried out on a seasonal basis. After calculating the optimal time scale of the SPI through the correlation between the SPI and WT data, we used the copula theory to model the joint probability distribution between the WT and SPI on the optimal time scale. During spring and fall, the possibility of environmental drought caused by high WT increased in most of the river sections. Notably, in summer, the possibility of environmental drought caused by high WT increased in all river sections. On the other hand, in winter, the possibility of environmental drought caused by low WT increased in most river sections. From the risk map, which quantified the sensitivity of WT to the risk of environmental drought, the river sections Nakbon C, Namgang E, and Nakbon K showed increased stress in the water ecosystem due to high WT when drought occurred in summer. When drought occurred in winter, an increased water ecosystem stress caused by falling WT was observed in the river sections Gilan A, Yongjeon A, Nakbon F, Hwanggang B, Nakbon I, Nakbon J, Nakbon K, Nakbon L, and Nakbon M. The methodology developed in this study will be used in the future to quantify the effects of drought on water quality as well as WT.

Probabilistic evaluation of ecological drought in forest areas using satellite remote sensing data (인공위성 원격 감지 자료를 활용한 산림지역의 생태학적 가뭄 가능성에 대한 확률론적 평가)

  • Won, Jeongeun;Seo, Jiyu;Kang, Shin-Uk;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.705-718
    • /
    • 2021
  • Climate change has a significant impact on vegetation growth and terrestrial ecosystems. In this study, the possibility of ecological drought was investigated using satellite remote sensing data. First, the Vegetation Health Index was estimated from the Normalized Difference Vegetation Index and Land Surface Temperature provided by MODIS. Then, a joint probability model was constructed to estimate the possibility of vegetation-related drought in various precipitation/evaporation scenarios in forest areas around 60 major ASOS sites of the Meteorological Administration located throughout Korea. The results of this study show the risk pattern of drought related to forest vegetation under conditions of low atmospheric moisture supply or high atmospheric moisture demand. It also identifies the sensitivity of drought risks associated with forest vegetation under various meterological drought conditions. These findings provide insights for decision makers to assess drought risk and develop drought mitigation strategies related to forest vegetation in a warming era.

An Extraction of Solar-contaminated Energy Part from MODIS Middle Infrared Channel Measurement to Detect Forest Fires

  • Park, Wook;Park, Sung-Hwan;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2019
  • In this study, we have proposed an improved method to detect forest fires by correcting the reflected signals of day images using the middle-wavelength infrared (MWIR) channel. The proposed method is allowed to remove the reflected signals only using the image itself without an existing data source such as a land-cover map or atmospheric data. It includes the processing steps for calculating a solar-reflected signal such as 1) a simple correction model of the atmospheric transmittance for the MWIR channel and 2) calculating the image-based reflectance. We tested the performance of the method using the MODIS product. When compared to the conventional MODIS fire detection algorithm (MOD14 collection 6), the total number of detected fires was improved by approximately 17%. Most of all, the detection of fires improved by approximately 30% in the high reflection areas of the images. Moreover, the false alarm caused by artificial objects was clearly reduced and a confidence level analysis of the undetected fires showed that the proposed method had much better performance. The proposed method would be applicable to most satellite sensors with MWIR and thermal infrared channels. Especially for geostationary satellites such as GOES-R, HIMAWARI-8/9 and GeoKompsat-2A, the short acquisition time would greatly improve the performance of the proposed fire detection algorithm because reflected signals in the geostationary satellite images frequently vary according to solar zenith angle.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

Estimating Nakdong Estuary Barrage outflow using upstream hydrograph (상류 수위를 활용한 낙동강 하구둑 유출량 추정)

  • Shim, Kyuhyun;Jung, Hahn Chul;Hwang, Do-hyun;Kim, Daesun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • The Nakdong Estuary Barrage is a tidal river environment where freshwater and seawater meet. This requires systematic monitoring of both surface water discharged from the estuary barrage and submarine groundwater discharge. In this study, upstream hydrograph and water balance analysis were used to calculate the change in water storage and discharge of the Nakdong Estuary Barrage. Submarine groundwater discharge was also calculated based on remote sensing-based digital elevation model data and hydrological modeling data, and compared with the estimated surface water discharge for analysis. Our proposed method can be efficiently applied to water resource management by utilizing remote sensing-based altimeter data other than field measurement. Because submarine groundwater discharge plays a significant role on the coastal environment as well as surface water discharge from an estuary barrage, studies on groundwatersurface water interactions in a river estuary should be sufficiently considered in monitoring the ecosystem of the Nakdong Estuary Barrage.

Sensitivity of East Asian Summer Monsoon Precipitation to the Location of the Tibetan Plateau

  • Soo-Hyun Seok;Kyong-Hwan Seo
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.8829-8840
    • /
    • 2021
  • Recent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east-west direction, the TP is likely to force the stationary waves that induce precipitation over the midlatitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.