• Title/Summary/Keyword: Earth system model

Search Result 927, Processing Time 0.029 seconds

A study on the bending stresses of tunnel shotcrete due to the coefficient of lateral earth pressure (측압계수의 변화에 따른 터널 숏크리트의 휨응력에 관한 연구)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.23-35
    • /
    • 2009
  • This study was performed to investigate the bending stresses of tunnel shotcrete as a function of the coefficient of lateral earth pressure. To perform this study, a large scale model tunnel with an one-lane horseshoe shaped road tunnel was prepared. The 3 dimensional numerical analyses were carried out to verify the results obtained from the model tests. For the loading system during the tests, 11 cylinder pressure jacks which can be controlled individually were used to simulate various loading conditions. The tests were preformed three times with three different lateral earth pressure coefficients of 0.5, 1.0 and 2.0. The bending stresses of shotcrete measured in tests were compared and analyzed with those calculated from numerical analyses. As a result, it was found that the bending compressive stresses obtained from numerical analyses were similar to those of tunnel model tests and bending tensile stresses were slightly overestimated during numerical analyses.

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

Analyzing the Characteristics of Sea Ice Initial Conditions for a Global Ocean and Sea Ice Prediction System, the NEMO-CICE/NEMOVAR over the Arctic Region (전지구 해양·해빙예측시스템 NEMO-CICE/NEMOVAR의 북극 영역 해빙초기조건 특성 분석)

  • Ahn, Joong-Bae;Lee, Su-Bong
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.82-89
    • /
    • 2015
  • In this study, the characteristics of sea ice initial conditions generated from a global ocean and sea ice prediction system, the Nucleus for European Modeling of the Ocean (NEMO) - Los Alamos Sea Ice Model (CICE)/NEMOVAR were analyzed for the period June 2013 to May 2014 over the Arctic region. For the purpose, the observed and reanalyzed data were used to compare with the sea ice initial conditions. Results indicated that the variability of the monthly sea ice extent and thickness in model initial conditions were well represented as compared to the observation, while it was found that the extent and thickness of Arctic sea ice in initial data were narrower and thinner than those in reanalysis and observation for the period. The reason for the narrower sea ice extent in model initial conditions seems to be due to the fact that the initial sea ice concentration at the boundary area of sea ice was about 20 percent less than the reanalysis data. Also, the reason for the thinner sea-ice thickness in the Arctic region is due to the underestimation of Arctic sea ice thickness (about 60 cm) of the model initial conditions in the Arctic Ocean area adjacent to Greenland and Arctic archipelago where thick sea ice appears all the year round.

A Study on the Effects of Wind Fence on the Dispersion of the Particles Emitted from the Construction Site Using GIS and a CFD Model (GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구)

  • Kim, Dong-Ju;Wang, Jang-Woon;Park, Soo-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.763-775
    • /
    • 2018
  • In this study, the effects of wind fences on the dispersion of the particles emitted from a constructing site located in the building-congested area in Busan, Korea, using geographic information system (GIS) and a computational fluid dynamics (CFD) model. We averaged the wind speeds observed for 10 years at the Busan automated synoptic observing system (ASOS) and we used the averaged wind speed as the wind speed at the reference height (10 m above the ground level). The numerical simulations were performed for 16 inflow directions, before and after the construction of wind fences with the heights of 5 m and 10 m (total 48 simulations). The detailed flows were analyzed for the northeasterly and south-southwesterly cases which predominantly observed at the Busan ASOS. In the northeasterly case, high concentration appeared at the elementary school next to the construction site due to transport by the airflow coming from the northeast. In the 5-m wind fence case, the wind speeds were slightly weaker and the spread of the fugitive dust was slightly less than those in the no wind fence case. In the 10-m wind fence case, the dust concentration at the elementary school has the maximum reduction of 37%. In the south-southwesterly case, the flow pattern became complicated in the construction site due to the terrain and buildings. Fugitive dust was stagnant at the south side of the construction site but rather spread to the north, increasing the concentration at the elementary school. After the wind fence was built, the concentrations inside the construction site became high as the wind speeds decreased inside, but, the concentrations in the elementary school rather decreased.

Optimal Estimation (OE) Technique to Retrieve the Ozone Column and Tropospheric Ozone Profile Based on Ground-based MAX-DOAS Measurement (오존전량 및 대류권 오존 프로파일 산출을 위한 지상관측 MAX-DOAS 원시자료 기반의 최적추정(Optimal Estimation) 기술)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Kim, Daewon;Yang, Jiwon;Kang, Hyungwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.191-201
    • /
    • 2018
  • In this present study, we, for the first time, retrieved total column of ozone ($O_3$) and tropospheric ozone vertical profile using the Optimal Estimation (OE) method based on the MAX-DOAS measurement at the Yonsei University in Seoul, Korea. The optical density fitting is carried out using the OE method to calculate ozone columns. The optical density between the MAX-DOAS data obtained by dividing the measured intensities for each viewing elevated angle by those at the zenith angle. The retrieved total columns of the ozone are 375.4 and 412.6 DU in the morning (08:13) and afternoon (17:55) on 23 May, 2017, respectively. In addition, under 10 km altitude, the $O_3$ vertical profile was retrieved with about 5% of retrieval uncertainty. However, above 10 km altitude, the $O_3$ vertical profile retrieval uncertainty was increased (>10%). The spectral fitting errors are 16.8% and 19.1% in the morning and afternoon, respectively. The method suggested in this present study can be useful to measure the total ozone column using the ground-based hyper-spectral UV sensors.

Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region (한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발)

  • Bae, Deg-Hyo;Son, Kyung-Hwan;Ahn, Joong-Bae;Hong, Ja-Young;Kim, Gwang-Soeb;Chung, Jun-Seok;Jung, Ui-Seok;Kim, Jong-Khun
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

Development and Application of the Student Activity-centered High School Science Textbook Model: Focused on Earth Science (학생 활동 중심의 고등학교 과학 교과서 모형 개발 및 적용: 지구과학 영역을 중심으로)

  • Lee, Hyonyong;Lee, Hyundong;Chae, Dong-hyun;Lim, Sung-man;Jeon, Jaedon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.139-151
    • /
    • 2016
  • The purposes of this study were to develop the student activity-centered science textbook model in high school and explore the field application possibility. For development of student activity-centered science textbook model, we conducted a literature survey about foreign science textbook and science curriculum and we developed the textbook development framework based on 7E learning model. Based on framework, we developed student activity-centered science textbook model about achievement standards 'systems and interaction - earth systems'. A development model is the total amount of five class periods and the various objectives were reflected in pursuit systems thinking & STEAM. 1~4 class periods, learning content composed of student activity-centered exploration activities that organically associated to make final products. Fifth class period was presented to explore job and career. A development model was applied to high school class for one time study. Applying the result of field study, students were responded positively in interested about science class, textbook contents, made final product. Through this study, if science textbook was made on the basis of the revised student activity-centered science textbook model, students were lead to positive change in science class.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.

Optimizing a Low-resolution Global Ocean Circulation Model Using MOM6 (MOM6 저해상도 전지구 해양순환모델의 최적화 연구)

  • HO CHAN PARK;INSEONG CHANG;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • This study conducted various sensitivity experiments to assess and improve the performance of low-resolution global ocean circulation models. The MOM6 (Modular Ocean Model Version 6), developed by the Geophysical Fluid Dynamics Laboratory, was utilized. We focused on analyzing the effects of implementing the ePBL (energetics based planetary boundary layer) mixed layer scheme, including tidal simulation, and applying hybrid vertical coordinate system on the simulation accuracy of ocean circulation. The results revealed that the ePBL scheme effectively mitigated excessive mixed layer thickness and high temperature biases in the equatorial Pacific, while tidal simulations contributed to improving the oceanic structures in the Yellow Sea and the East Sea. Additionally, the hybrid vertical coordinate system enabled more accurate simulations of the vertical structure of temperature and salinity, enhancing model performance. This study proposes specific approaches to enhance the accuracy of ocean circulation models, contributing to global ocean and climate modeling efforts.