Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.2.1.3

Optimal Estimation (OE) Technique to Retrieve the Ozone Column and Tropospheric Ozone Profile Based on Ground-based MAX-DOAS Measurement  

Park, Junsung (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Hong, Hyunkee (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Choi, Wonei (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Kim, Daewon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Yang, Jiwon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Kang, Hyungwoo (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Lee, Hanlim (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.34, no.2_1, 2018 , pp. 191-201 More about this Journal
Abstract
In this present study, we, for the first time, retrieved total column of ozone ($O_3$) and tropospheric ozone vertical profile using the Optimal Estimation (OE) method based on the MAX-DOAS measurement at the Yonsei University in Seoul, Korea. The optical density fitting is carried out using the OE method to calculate ozone columns. The optical density between the MAX-DOAS data obtained by dividing the measured intensities for each viewing elevated angle by those at the zenith angle. The retrieved total columns of the ozone are 375.4 and 412.6 DU in the morning (08:13) and afternoon (17:55) on 23 May, 2017, respectively. In addition, under 10 km altitude, the $O_3$ vertical profile was retrieved with about 5% of retrieval uncertainty. However, above 10 km altitude, the $O_3$ vertical profile retrieval uncertainty was increased (>10%). The spectral fitting errors are 16.8% and 19.1% in the morning and afternoon, respectively. The method suggested in this present study can be useful to measure the total ozone column using the ground-based hyper-spectral UV sensors.
Keywords
Total ozone column; Tropospheric ozone profile; Optimal estimation; Inversion model; MAX-DOAS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balis, D., M. Kroon, M. Koukouli, E. Brinksma, G. Labow, J. Veefkind, and R. McPeters, 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, Journal of Geophysical Research: Atmospheres (1984-2012), 112(D24).
2 Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
3 Spurr, R. and M. Christi, 2014. On the generation of atmospheric property Jacobians from the (V) LIDORT linearized radiative transfer models, Journal of Quantitative Spectroscopy and Radiative Transfer, 142: 109-115.   DOI
4 Van Roozendael, M., D. Loyola, R. Spurr, D. Balis, J. C. Lambert, Y. Livschitz, and C. Zehner, 2006. Ten years of GOME/ERS-2 total ozone data-The new GOME data processor (GDP) version 4: 1. Algorithm description, Journal of Geophysical Research: Atmospheres, 111(D14).
5 Bramstedt, K., J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. P. Burrows, 2003. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000, Atmospheric Chemistry and Physics, 3(5): 1409-1419.   DOI
6 Donkelaar, A., R. V. Martin, R. J. Spurr, E. Drury, L. A. Remer, R. C. Levy, and J. Wang, 2013. Optimal estimation for global ground-level fine particulate matter concentrations, Journal of Geophysical Research: Atmospheres, 118(11): 5621-5636.   DOI
7 Govaerts, Y. M., S. Wagner, A. Lattanzio, and P. Watts, 2010. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory, Journal of Geophysical Research: Atmospheres, 115(D2).
8 Honrath, R. E., R. C. Owen, M. Val Martin, J. S. Reid, K. Lapina, P. Fialho, M. E. Dziobak, J. Kleissl, and D. L. Westphal, 2004. Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and $O_3$ in the North Atlantic lower free troposphere, Journal of Geophysical Research: Atmospheres, 109(D24).
9 Hong, H., H. L. Lee, J. Kim, and Y. G. Lee, 2014. First comparison of OMI-DOAS total ozone using ground-based observations at a megacity site in East Asia: Causes of discrepancy and improvement in OMI-DOAS total ozone during summer, Journal of Geophysical Research: Atmospheres, 119: 10058-10067.   DOI
10 Honninger, G., C. V. Friedeburg, and U. Platt, 2004. Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmospheric Chemistry and Physics, 4(1): 231-254.   DOI
11 Irie, H., H. Takashima, Y. Kanaya, K. F. Boersma, L. Gast, F. Wittrock, D. Brunner, Y. Zhou, and M. V. Roozendael, 2011. Eight-component retrievals from ground-based MAX-DOAS observations, Atmospheric Measurement Techniques, 4(6): 1027-1044.   DOI
12 Matyssek, R., D. Le Thiec, M. Low, P. Dizengremel, A. J. Nunn, and K. H. Haberle, 2006. Interactions between drought and $O_3$ stress in forest trees, Plant Biology, 8(1): 11-17.   DOI
13 Jeong, U., J. Kim, C. Ahn, O. Torres, X. Liu, P, K. Bhartia, R. J. D. Spurr, D. Haffner, K. Chnace, and B. N. Holben, 2016. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations, Atmospheric Chemistry and Physics, 15: 177-193.
14 Komhyr, W. D., 1969. Electrochemical concentration cells for gas analysis, Annales Geophysicae, 25(1): 203-210.
15 Kroon, M., J. P. Veefkind, M. Sneep, R. McPeters, P. Bhartia, and P. Levelt, 2008. Comparing OMITOMS and OMI-DOAS total ozone column data, Journal of Geophysical Research: Atmospheres (1984-2012), 113(D16).
16 McKee, D., 1993. Tropospheric ozone: human health and agricultural impacts, CRC Press, Boca Raton, FL, USA.
17 McPeters, R., M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J.P. Veefkind, P.K. Bhartia, and P.F. Levelt, 2008. Validation of the AURA Ozone Monitoring Instrument total column ozone product, Journal of Geophysical Research: Atmospheres (1984-2012), 113(D15).
18 McPeters, R. D. and G. J. Labow, 1996. An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS version 7 ozone data by comparison with the Dobson network, Geophysical Research Letters, 23(25): 3695-3698.   DOI
19 Rodgers, C. D, 2000. Inverse methods for atmospheric sounding: theory and practice, vol. 2, World scientific, Rosewood, MA, USA.
20 Seinfeld, J. H. and S. N. Pandis, 2006. Atmospheric chemistry and physics, Wiley-interscience, Rosewood, MA, USA.