• Title/Summary/Keyword: Earth retaining walls

Search Result 163, Processing Time 0.029 seconds

Coefficient charts for active earth pressures under combined loadings

  • Zheng, De-Feng;Nian, Ting-Kai;Liu, Bo;Yin, Ping;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.461-476
    • /
    • 2015
  • Rankine's theory of earth pressure cannot be directly employed to c-${\phi}$ soils backfill with a sloping ground subjected to complex loadings. In this paper, an analytical solution for active earth pressures on retaining structures of cohesive backfill with an inclined surface subjected to surcharge, pore water pressure and seismic loadings, are derived on the basis of the lower-bound theorem of limit analysis combined with Rankine's earth pressure theory and the Mohr-Coulomb yield criterion. The generalized active earth pressure coefficients (dimensionless total active thrusts) are presented for use in comprehensive design charts which eliminate the need for tedious and cumbersome graphical diagram process. Charts are developed for rigid earth retaining structures under complex environmental loadings such as the surcharge, pore water pressure and seismic inertia force. An example is presented to illustrate the practical application for the proposed coefficient charts.

Stability Analysis According to the Shape of Assembled Earth Retaining Wall by the Field Model Tests and 3D-Numerical Analysis (현장모형실험과 3D 수치해석을 통한 AER 조립식 지주옹벽의 형태에 따른 안정성 분석)

  • Seo, Minsu;Im, Jong-Chul;Son, Su Won;Kim, Hong-Sun;Choi, Jung-Hyun;Kim, Changyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • There are many limitations for ensuring structural stability of retaining wall. Especially, L-shaped retaining wall and gravity retaining wall need large space, and massive concrete, respectively. Assembled Earth Retailing (AER) wall was developed to overcome the shortcomings. In this paper, stability of AER wall is verified by field model tests and the 3D-numerical analysis. The results show that horizontal displacement of AER wall was reduced by maximum 67.84% for conventional retaining walls, and earth pressure acting on the retaining wall was reduced by maximum 73.19%.

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF

Permanent Basement Wall Convergence Method Using a PHC Pile (PHC 파일을 이용한 영구벽체 융합 공법)

  • Ryu, Soo-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.163-169
    • /
    • 2015
  • This study was intended to suggest a new-concept construction method of permanent basement wall combined with earth retaining wall by using PHC piles to overcome the disadvantages of conventional CIP methods or the like which have been used just for earth retaining walls during field construction, and to determine its applicability. PHC piles are characterized by the reliable quality attributed to prefabrication (shop fabrication) as well as superior concrete strength and prestressing steel strength to that of CIP in the aspect of materials, and also higher bending moment than that of CIP in the aspect of structure.

A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test (동적원심모형실험을 이용한 지진 시 역T형 옹벽의 관성력 영향 분석 사례 연구)

  • Jo, Seong-Bae;Ha, Jeong-Gon;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • Mononobe-Okabe (M-O) theory is widely used for evaluating seismic earth pressure of retaining wall. It was originally developed for gravity walls, which have rigid behavior, retaining cohesionless backfill materials. However, it is used for cantilever retaining wall on the various foundation conditions. Considering only inertial force of the soil wedge as a dynamic force in the M-O method, inertial force of the wall does not take into account the effect on the dynamic earth pressure. This paper presents the theoretical background for the calculation of the dynamic earth pressure of retaining wall during earthquakes, and the current research trends are organized. Besides, the discrepancies between real seismic behavior and M-O method for inverted T-shape retaining wall with 5.4m height subjected to earthquake motions were evaluated using dynamic centrifuge test. From previous studies, it was found that application point, distribution of dynamic earth pressure and M-O method are needed to be re-examined. Test results show that real behavior of retaining wall during an earthquake has a different phase between dynamic earth pressure and inertial force of retaining wall. Moreover, when bending moments of retaining wall reach maximum values, the measured earth pressures are lower than static earth pressures and it is considered due to inertial effects of retaining wall.

The Comparative Experiment of Geogrid Reinforcement Types with Construction Stage on Segmental Retaining Walls (블록식 보강토 옹벽에서의 시공단계별 보강재 타입에 따른 거동비교)

  • Lee, Sung-Hyouk;Lee, Jin-Wook;Choi, Chan-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, the earth pressure, displacement and strain were compared with reinforcement types at segmental retaining wall through full scale model test. The test results found that the measurement of earth pressure and displacement at wall for the fully reinforced retaining wall are different from those for the partly reinforced retaining wall. The analyses of these results would suggest that the used of geoogrid allowed the vertical earth pressure and displacement at wall to be reduced. The horizontal earth pressure in upper and lower part of wall can change with reinforcement type and earth deformation and were larger than the active and the rest pressure. Also, the lateral earth pressure and displacement of wall have a very high a correlation. It was found that the strain contour distribution of reinforcements was occurred a large strain at cental part of wall in segmental retaining wall system.

Effect of preloading on residual deformation of Back-To-Back reinfored wall (선행하중작용시 Back-To-Back(BTB) 보강토 옹벽의 거동 특성)

  • Kim, Sun-Bin;Yoo, Chung-Sik;Kim, Jae-Wang;Joo, Sung-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.251-258
    • /
    • 2008
  • The use of reinforced earth walls in permanent structures is getting it's popularity. Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, during their service period. In this investigation, the effect of preloading in reducing long term residiual deformation of back-to-back reinforced soil wall under sustained and/or repeated loading enviormentment using a series of reduced-scale model tests. It is found that the preloading technique can be an effective means of controlling residual deformations of reinforced soils under varisous loading conditions.

  • PDF

Mechanical Effects of Back Supporting Beam of Assembled Earth Retaining Wall on Field Model Tests Results (현장모형실험을 통한 AER옹벽의 지주보의 역학적 효과)

  • Kim, Hongsun;Im, Jong-Chul;Choi, Junghyun;Seo, Minsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.343-355
    • /
    • 2017
  • In this study, an Assembled Earth Retaining Wall (AER wall) is newly proposed. The AER wall combined stabilizing piles names as Back Supporting Beam is developed to improve stability and economics of existing retaining walls. For the verification of the AER wall, the field model tests and 3D numerical analyses were performed. As a result of the field tests, it can be confirmed that the earth pressure is considerably reduced compared with the L-shaped retaining wall. Also, the 3D numerical analyses show that AER wall is at least 29.85% more effective at lateral displacement than general L-shaped retaining wall. In other words, AER wall is expected to raise economical efficiency because of excellent mechanical stability of Back Supporting Beam.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.