DOI QR코드

DOI QR Code

A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test

동적원심모형실험을 이용한 지진 시 역T형 옹벽의 관성력 영향 분석 사례 연구

  • Received : 2012.12.10
  • Accepted : 2013.04.03
  • Published : 2013.04.28

Abstract

Mononobe-Okabe (M-O) theory is widely used for evaluating seismic earth pressure of retaining wall. It was originally developed for gravity walls, which have rigid behavior, retaining cohesionless backfill materials. However, it is used for cantilever retaining wall on the various foundation conditions. Considering only inertial force of the soil wedge as a dynamic force in the M-O method, inertial force of the wall does not take into account the effect on the dynamic earth pressure. This paper presents the theoretical background for the calculation of the dynamic earth pressure of retaining wall during earthquakes, and the current research trends are organized. Besides, the discrepancies between real seismic behavior and M-O method for inverted T-shape retaining wall with 5.4m height subjected to earthquake motions were evaluated using dynamic centrifuge test. From previous studies, it was found that application point, distribution of dynamic earth pressure and M-O method are needed to be re-examined. Test results show that real behavior of retaining wall during an earthquake has a different phase between dynamic earth pressure and inertial force of retaining wall. Moreover, when bending moments of retaining wall reach maximum values, the measured earth pressures are lower than static earth pressures and it is considered due to inertial effects of retaining wall.

Mononobe-Okabe (M-O) 이론은 현재 국내외에서 가장 일반적으로 사용되는 지진 시 옹벽에 작용하는 동적토압 산정 방법이다. M-O방법은 강체거동(Rigid Behavior)을 갖는 중력식 옹벽의 사질토 뒤채움 지반에 대하여 제안된 방식이지만 현재 여러 지반 조건 및 캔틸레버 형태의 옹벽에도 널리 적용되고 있다. M-O 방법은 지진 시 발생하는 뒤채움 지반의 관성력만을 고려하기 때문에 벽체의 관성력이 동적 토압에 미치는 영향을 고려하지 못하는 단점이 있다. 본 논문에서는 M-O 방법을 포함하여 지진 시 옹벽에 작용하는 동적토압을 산정하는 기존에 제안된 방법들의 이론적 배경 및 현재까지의 연구동향을 분석하였으며, 이를 통하여 지진 시 토압산정의 중요한 요소인 동적토압의 분포 및 작용점에 대한 합리적인 재평가가 필요함을 도출하였다. 역 T형 옹벽을 대상으로 동적원심모형실험을 수행하여 지진 시 옹벽에 작용하는 동적 토압을 M-O 이론과 모형 모델 거동과의 비교를 통하여 차이점을 평가하였다. 실험 결과, 지진 시 옹벽의 실제 거동은 M-O 방법의 가정과 달리 벽체의 관성력과 동적토압 사이에 위상차가 발생함을 알 수 있었다. 또한 벽체에서 주동방향으로 최대 휨 모멘트 발생 시 계측된 토압은 정적토압보다 감소하는 결과를 보였으며 이는 벽체 관성력이 원인인 것으로 판단된다.

Keywords

References

  1. Ministry of Land, Transport and Maritime Affairs (2008), Retaining wall standard plans (structural calculation sheet)
  2. Korean Geotechnical Society (2009), Design Criteria for Structure Foundation, pp.820-825.
  3. Anderson, D. G., Martin, G. R., Lam, I., and Wang, J. N. (2009), Seismic analysis and design of retaining walls, buried structures, slopes, and embankments, NCHRP Rep. 611, Transportation Research Board, Washington, D.C.
  4. Al Atik, L. and Sitar, N. (2010), "Seismic Earth Pressures on Cantilever Retaining Structures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.10, pp.1324-1333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000351
  5. Coulomb, C. A. (1776), Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav., Vol.7, pp.343-387.
  6. Green, R. A., Olgun, C. G., and Cameron, W. I. (2008), "Response and Modeling of Cantiliever Retaining Walls Subjected to Seismic Motions", Computer-Aided Civil and Infrastructure Engineering, Vol.23, pp.309-322. https://doi.org/10.1111/j.1467-8667.2007.00538.x
  7. Jung, C., Bobet, A., and Fernandez, G. (2010), "Analytical solution for the response of a flexible retaining structure with an elastic backfill", International Journal for Numerical and Analytical Methods in Geomechnics, Vol.34, pp.1387-1408. https://doi.org/10.1002/nag.873
  8. Kim, D. S., Kim, N. R., Choo, Y. W., and Cho, G. C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE Journal of Civil Engineering, Vol.17, No.1, pp.77-84. https://doi.org/10.1007/s12205-013-1350-5
  9. Kim, H.B., Joo, T.S., Kim, J.M., and Kim. K.S. (2002), "Lateral Earth Pressure of Cantilever Retaining Wall Stem", Proceedings of Korea Society of Civil Engineers (KSCE) Conference, KSCE, pp.2371-2374.
  10. Kim, S. R., Kwon, O. S., and Kim, M. M., (2003), "Modeling of Force Components Acting on Quay Walls During Earthquakes", Journal of Korean Geotechnical Society(KGS), Vol.19, No.2, pp.107-121.
  11. Lee, S. H., Choo, Y. W., and Kim, D. S. (2013), "Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests", Soil Dynamics and Earthquake Engineering, Vol.44, pp.102-114. https://doi.org/10.1016/j.soildyn.2012.09.008
  12. Mononobe, N. and Matsuo, M. (1929), "On the determination of earth pressures during earthquakes", Proc. World Engrg. Congress, Vol.9 , pp.179-187.
  13. Mylonakis, G., Kloukinas, P., and Papatonopoulos, C. (2007), "An Alternative to the Mononobe-Okabe Equation for Seismic Earth Pressures", Soil Dynamics and Earthquake Engineering, Vol.27, No.10, pp.957-969. https://doi.org/10.1016/j.soildyn.2007.01.004
  14. Nakamura, S. (2006), "Re-examination of Mononobe-Okabe theory of gravity retaining walls using centrifuge model tests", Soils and Foundations, Vol.46, No.2, pp.135-146. https://doi.org/10.3208/sandf.46.135
  15. Nam, S. W., Chung, S. G., Lee, M. R., and Kim, M. G. (2000), "Model Experiments for Lateral Pressure on Cantilever Retaining Wall", Journal of Korea Society of Civil Engineers (KSCE), Vol.20, No.6C, pp.471-483.
  16. Okabe, S. (1926), "General theory of earth pressures.", J. Japan. Soc. Civil Eng., Vol.12, No.1, pp.123-134.
  17. Ortiz, L. A., Scott, R. F., and Lee, J. (1983), "Dynamic Centrifuge Testing of a Cantilever Retaining Wall", Earthquake Engineering and Structural Dynamics, Vol.11, No.2, pp.251-268. https://doi.org/10.1002/eqe.4290110207
  18. Ostadan, F. (2005), "Seismic soil pressure for building walls. An updated approach", Soil Dynamics and Earthquake Engineering, Vol.25, pp.785-793. https://doi.org/10.1016/j.soildyn.2004.11.035
  19. Prakash, S. and Basavanna, B. M. (1969), "Earth pressure distribution behind retaining wall during earthquakes", Proc., 4th World Conf. on Earthquake Engineering, Santiago, Chile.
  20. Seed, H. B. and Whitman, R. V. (1970), "Design of Earth Retaining Structures for Dynamic Loads", ASCE Specialty Conference, Lateral Stresses in the Ground and Design of Earth Retaining Structures, Cornell Univ., Ithaca, New York, 103-147.
  21. Sherif, M. A., Ishibashi, I., and Lee, C. D. (1982), "Earth Pressure against Stiff Retaining Walls", Journal of Geotechnical Engineering, ASCE, Vol.108, pp.679-695.
  22. Steedman, R. S. and Zeng, X. (1990), "The Seismic Response of Waterfront Retaining Walls", Design and Performance of Earth Retaining Structures, Conference Proceedings, Cornell University, Ithaca, New York, June 18-21, ASCE Geotechnical Special Publication No. 25.
  23. Yoon, S. J., Kim, S. R., Hwang, J. I., and Kim, M. M. (2005), "Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls", Journal of Korean Geotechnical Society(KGS), Vol.21, No.8, pp.55-61.

Cited by

  1. 흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구 vol.37, pp.8, 2013, https://doi.org/10.7843/kgs.2021.37.8.37