• Title/Summary/Keyword: Earth reinforcement

Search Result 240, Processing Time 0.026 seconds

An Experimental Study on the Earth Pressure Effect of Vertical Reinforcements (연직보강재의 토압경감 효과)

  • 문경선;이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.457-464
    • /
    • 1999
  • The active earth pressure on the retaining wall is reduced by 3-Dimensional effects of the ground. Therefore, the test was focused on reducing the earth pressure on the retaining wall by inserting the vertical reinforcement in the backfill ground to develope the 3-Dimensional effects. Model tests in sand were peformed to measure the 3-Dimensional effects of the vertical reinforcement on the active earth pressure and its distribution and results were compared with the theories. The size of the vertical reinforcement, the geometry of the backfill space, and the wall friction of vertical reinforcement were varied. It was observed that the active earth pressure and its distribution on the underground structure were affected by the size of the vertical reforcements and wall friction.

  • PDF

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

Field Monitoring of Panel-type Reinforced Earth Walls Using Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재를 사용한 패널식 보강토옹벽의 현장계측 연구)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • A new style of panel-type reinforced earth wall is a more integrated structure by connecting the geosynthetic strip reinforcement with a folding groove directly to the front panel through C-shaped insertion hole embedded in the panel. In this study, field measurements were conducted on two reinforced earth walls constructed at different sites to assess the field applicability and structural stability of the new style of panel-type reinforced earth wall. The horizontal displacement of the front panel, tensile deformation of the geosynthetic strip reinforcement, and horizontal earth pressure acting on the panel were measured and analyzed through the field measurements. According to the field measurements, after completion of the reinforced earth wall construction, the maximum horizontal earth pressure applied to the front panel was less than two-thirds of the Rankine earth pressure, and the maximum horizontal displacement of the front panel was less than 0.5% of the wall height, and the maximum tensile strain generated on the reinforcement was less than 1.0%. Therefore, it was found that two reinforced earth walls constructed at different sites remained stable.

New horizon of earth reinforcement technique - current and future -

  • Otani, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.514-527
    • /
    • 2007
  • Earth reinforcement techniques are used worldwide and offer proven solutions to a wide range of geotechnical engineering problems. Here in this paper, recent developments of three major reinforced soil retaining wall methods in Japan were introduced in order to show how the current situation of this technique in Japan is. And the statistical data for the volume of the use was also shown, such as the total volume of the use, the scales of the structures, layout of the earth reinforcement, fill materials, and foundation conditions. Some of the case histories were also introduced with photographs and figures. And then, as one of recent research activity by the author, the study on the application of X-ray CT for the problem of earth reinforcement method combined with other method such as piling and soil improvement was introduced. In this study, a series of model test for several reinforced ground with geogrids was conducted using a newly developed test apparatus. Then, the behavior in the soil box was scanned after settlement using X-ray CT scanner. Based on these test results, the reinforcing effect by the geogrids and the soil arching effect over the pile heads was discussed precisely and those are done in 3-D with nondestructive condition. Finally, the effectiveness of the use of X-ray CT scanner in geotechnical engineering was promised.

  • PDF

A Case Study of Extra Reinforcement by Road Extension work on Existing Cut Slope Reinforced with Counterweight Fill and Stabilizing Piles (압성토 및 억지말뚝으로 보강된 도로의 확장공사로 인한 추가 보강사례 연구)

  • Park, Jeong-Yong;Kim, Woo-Seong;Kim, Jae-Kyoung;Yang, Tae-Sun;Na, Kyung-Joon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • To confirm the stability of a cut slope in the road extension construction site, several investigations were carried out and countermeasures of slope was studied. This paper describes a study of design case of extra reinforcement on existing cut slope reinforced by preloading and piles in roads. To investigate the effect of stabilizing piles installed in a cut slope, an instrumentation system also designed, was. As a result that the stabilizing file and earth anchor are considered as the extra reinforcement, both stabilizing pile and earth anchor guarantee the stability of cut slope. However, stabilizing pile is selected in aspects of economy and continuity to the existing cut slop reinforcement including counterweight fill and stabilizing piles.

  • PDF

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

Reinforced Earth Structures (보강토 공법)

  • 이은수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.301-313
    • /
    • 2001
  • Reinforced earth is a composite construction material in which the strength of engineering fill is enhanced by the addition of strong tensile reinforcement in variable types. The basic mechanism of reinforced earth involves the generation of frictional forces and bearing resistances between the soil and the reinforcement. The primitive structure of reinforced earth in Korean peninsula were found as the earth wall built around the old fort In about 3rd century Modern reinforced earth was introduced to Korea early 1980, and spreaded tremendously through the nation. Among them, not a few reinforced earth walls which were built ignored over all stabilities have been collapsed. In this paper basic concepts, economic benefits, design considerations and future applicable trends of reinforced earth are reviewed in simple manners.

  • PDF

Numerical Analysis for Optimum Reinforcement Length Ratio of Reinforced Earth Retaining Wall (보강토옹벽의 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choonsik;Ahn, Woojong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.5-14
    • /
    • 2018
  • Recently, method of reinforced earth retaining wall have been proposed according to the material of facing, geosynthetic, construction method, and facing slope. However, the regulations such as the design method and detailed review items according to each construction method are not clear, and collapse due to heavy rainfall frequently occurs. In this study, to obtain a more stable technical approach in the design of reinforced earth retaining wall, the combination of the pullout failure of reinforced earth retaining wall and the optimal reinforcement ratio of height using reinforced earth retaining wall using a single strength reinforcement is assumed, optimum design of stiffener, optimal design of superimposed wall and optimum length ratio of reinforcement material of geosynthetics are proposed through safety factor according to reinforcement length ratio (L/H).

Behaviour of Reinforced Earth Wall with Steel Framed-Facing based on Field Test (현장시험을 이용한 강재틀 보강토옹벽의 안정성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This paper describes the stability evaluation of reinforced earth wall with steel framed-facing based on field test. The reinforced earth wall with steel framed-facing is composed of wall facing, reinforcement and backfill soil. The wall facing is assembled by steel frames and the aggregates are filled in that. The reinforcement is steel strip type based on bearing resistance. Field test is conducted to evaluate for two separate sections and the measurement is conducted according to construction elapsed time of structure for earth pressure, horizontal displacement of wall facing and reinforcement strain. The evaluation results show that the measured earth pressure is less than theoretical earth pressure due to dispersion effect of earth pressure by the applied reinforcement. Also, the horizontal displacement of wall facing satisfied a empirical criteria and the measured strain of reinforcement had nearly no effect on stability of structure. Therefore, the reinforced earth wall with steel framed-facing has a structural stability and it can be commonly used in field.

A Study on the Bearing Capacity of Shallow Foundation according to the Reinforcement Geocell Layer (지오셀 보강 층수에 따른 얕은 기초의 지지력에 관한 연구)

  • Lee, Kyong-Cheon;Baek, Young-Sik;Park, Young-Hun;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.85-96
    • /
    • 2003
  • The Geocell system is the advanced system of Geo-grids, and is one of geosynthetics used for earth reinforcement of weak soil. It is the way to increase earth strength and bearing capacity by using three dimension type of geo-composite. This paper analyzed the bearing capacity mechanism of Geocell system for earth reinforcement. Plate loading tests under the model laboratory condition were performed, and the increase of bearing capacity and the decrease of settlement with shallow foundation were evaluated.

  • PDF