• Title/Summary/Keyword: Earth pressure Lateral displacement

Search Result 57, Processing Time 0.022 seconds

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju II - Case of Earth Anchor Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 II -어스앵커 공법 시공 사례-)

  • Do-Hyeong Kim;Dong-Wook Lee;Seung-Hyun Kim;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, in order to evaluate the application of lateral earth pressure to earth retaining wall supported by earth anchor in Jeju. The prediction of lateral earth pressure acting on the earth retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Hong & Yun lateral earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, the predicted value of the maximum horizontal displacement for site A was about 10 to 12 times greater than the measured value, and in the case of site B, the predicted value was evaluated as about 9 to 12 times greater than the measured value. That is, both sites showed a similar increase rate in the maximum horizontal displacement by the predicted value compared to the measured value. In all field construction cases, the maximum horizontal displacement by measured values occurred in the sedimentary layer, soft rock layer, and clinker layer, and the horizontal displacement distribution was shown in a trapezoidal shape. The maximum horizontal displacement by the predicted value occurred around the clinker layer, and the horizontal displacement distribution was elliptical. In the ground with a clinker layer, the measured value showed a very different horizontal displacement tendency from the predicted value, because the clinker layer exists in the form of a rock layer and continuous layer. In other words, it is unreasonable to apply the existing prediction method, which is overestimated, because the characteristics of the earth pressure distribution in Jeju show a tendency to be quite different from the predicted earth pressure distribution. Therefore, it is necessary to conduct a research on the lateral earth pressure in the realistic Jeju that can secure more economic efficiency.

Suitability Evaluation of Lateral Earth Pressure for Design Diaphragm Walls applied to the Top-Down Construction Method (Top-Down 공법이 적용된 지중연속벽의 설계시 측방토압의 적합성 평가)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The Rankine(1857)'s earth pressure and the Hong and Yun(1995a)'s earth pressure was applied to analyze the lateral displacement of diaphragm wall applied to the Top-Down construction method using the computer program, which is a common design program for diaphragm wall. The lateral displacement estimated by the computer program was compared with the lateral displacement measured by inclinometer. The Rankine's earth pressure has been widely used to design the diaphragm wall in the analysis of computer program. As the result of comparison, the lateral displacement of diaphragm wall was predicted differently according to the applied earth pressures. The behavior of lateral displacement predicted by the Rankine's earth pressure was different with displacement measured by inclinometer and the lateral displacement at the bottom part was overestimated. However, the lateral displacement predicted by the Hong and Yun's earth pressure is similar to the behavior and maximum value of real displacement. Therefore, the Hong and Yun's earth pressure is more suitable than the Rankine' earth pressure to design the diaphragm walls applied to the Top-Down Construction Method.

Effects of Relief Shelves on Stability of Retaining Walls

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.25-31
    • /
    • 2022
  • Attaching shelf to retaining structure leads to a decrease in the total lateral earth pressure. This decrease enables the retaining structures to become more stable, to have small displacement, and to exhibit lower bending moments, the relief shelves effects are analyzed using FEM in order to understand how they stabilize cantilever wall in this study. Several models are varied by changing location and width of shelves to realize earth pressure and displacements of retaining wall. The displacement is getting smaller because earth pressure acting on shelf increases as shelves locations are lower and width is longer. The ground settlement variation effects caused by relief shelves are studied also. The ground settlement increases abruptly where shelf location is between of 0.5H and 0.625H, and settlement decreases suddenly where shelf width is between b/h=0.375 and b/h=0.500. The shelf significantly reduces earth pressure and movement of the wall. This decrease in the lateral pressure increases the retaining structure stability.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju I - Case of Strut Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 I -스트럿 공법 시공 사례)

  • Do-Hyeong Kim;Dong-Wook Lee;Hee-Bok Choi;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, In order to examine the application of lateral earth pressure to the earth retaining wall considering the typical ground characteristics (clinker layer) in Jeju. The prediction of the lateral earth pressure causing the horizontal displacement of the retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, it was confirmed that the maximum horizontal displacement predicted at site A was about 5 times larger than the measured value, and the ground with maximum horizontal displacement occurred by the prediction was found to be the clinker layer. In the case of site B, the predicted value was 4 to 7 times larger than the measured value. In addition, the ground with maximum horizontal displacement and the tendency of horizontal displacement were very different depending on the prediction method. This means that research on lateral earth pressure that can consider regional characteristics needs to be continued, because it is due to the multi-layered ground characteristics of the Jeju area in which bedrock layers and clinker layers are alternately distributed,

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground (연약지반에 설치된 앵커지지 강널말뚝 흙막이벽의 거동)

  • 홍원표;송영석;김동욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.65-74
    • /
    • 2004
  • Based on the field measuring data obtained from seven excavation sections in Inchon International Airport Project, the horizontal displacement of sheet piling walls supported by anchors and the lateral earth pressure acting on sheet piling walls was investigated in soft ground. The proposed diagram of lateral earth pressure is a rectangular form, and the maximum earth pressure corresponds to $0.6\gamma H$. The maximum earth pressure is similar to the empirical earth pressure proposed by NAVFAC(1982). The quantitative safe criterion of sheet piling walls with struts is established from the relationships between increasing velocity of maximum horizontal displacement and stability number in excavated ground. If the velocity of maximum horizontal displacement shows lower than 1mm per day, the sheet piling walls exist under stable state. When the velocity of maximum horizontal displacement becomes more than 1mm and less than 2mm per day, excavation works should be observed with caution. Also, when the velocity of maximum horizontal displacement becomes more than 2mm per day, appropriate remediations and reinforcements are applied to sheet piling walls.

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

Study on critical buckling load calculation method of piles considering passive and active earth pressure

  • Chen, Yong-Hui;Chen, Long;Xu, Kai;Liu, Lin;Ng, Charles W.W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.367-382
    • /
    • 2013
  • Different types of long slender pile shall buckle with weak soil and liquefied stratum surrounded. Different from considering single side earth pressure, it was suggested that the lateral earth pressure can be divided into two categories while buckling: the earth pressure that prevent and promotes the lateral movement. Active and passive earth pressure calculation model was proposed supposing earth pressure changed linearly with displacement considering overlying load, shaft resistance, earth pressure at both sides of the pile. Critical buckling load calculation method was proposed based on the principle of minimum potential energy quoting the earth pressure calculation model. The calculation result was contrasted with the field test result of small diameter TC pile (Plastic Tube Cast-in-place pile). The fix form could be fixed-hinged in the actual calculation assuring the accuracy and certain safety factor. The contributions of pile fix form depend on the pile length for the same geological conditions. There exists critical friction value in specific geological conditions that the side friction has larger impact on the critical buckling load while it is less than the value and has less impact with larger value. The buckling load was not simply changed linearly with friction. The buckling load decreases with increased limit active displacement and the load tend to be constant with larger active displacement value; the critical buckling load will be the same for different fix form for the small values.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Displacement of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반상에 축조된 호안의 측방유동에 따른 안벽말뚝의 변위)

  • Shin, Eun-Chul;Ryu, In-Gi;Kim, Jong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.932-939
    • /
    • 2005
  • Recently, the lateral displacement of the passive piles which installed under the revetment on soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of the ground when the revetment loading is exceeded a certain limit. The lateral displacement of ground causes an excessive deformation of under structure itself and develops lateral earth pressure against the pile foundation as well. Especially passive piles subjected to lateral earth pressures are likely to have excessive horizontal displacement and large bending moment, which induces structural failure of pile foundation and harmful effects on superstructure. The subject of study is to investigate the later displacement of pile foundation during the construction of container terminal at the south port of Incheon. Actual field measurement data and finite element method(FEM) by AFFIMEX Ver 3.4 were used to analyze the displacement of pile and the vertical settlement of soft ground. This analysis was carried out at each sequence of construction work.

  • PDF