• Title/Summary/Keyword: Earth observation

Search Result 1,001, Processing Time 0.027 seconds

A Study on Future Changes of Sea Surface Temperature and Ocean Currents in Northwest Pacific through CMIP6 Model Analysis (CMIP6 모형 결과 분석을 통한 북서태평양 해면수온과 해류의 미래변화에 대한 고찰)

  • JEONG, SUYEON;CHOI, SO HYEON;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.291-306
    • /
    • 2021
  • From the climate change scenario experiments of 21 models participating in Coupled Climate Model Inter-comparison Project Phase 6, future changes of sea surface temperature (SST) and Kuroshio in the Northwest Pacific were analyzed. The spatial feature of SST change was found to be related to the change of the current speed and spatial distribution of Kuroshio. To investigate the relationship between the change in latitude of the Kuroshio extension region, which flows along the boundary between the subtropical gyre and the subarctic gyre in the North Pacific, and the large-scale atmospheric circulation due to global warming, the zero-windstress curl line for each climate change experiment from 9 out of 21 models were compared. As the atmospheric radiative forcing increases due to the increase of greenhouse gases, it was confirmed that the zero-windstress curl line moves northward, which is consistent with the observation. These results indicate that as the Hadley Circulation expands to the north due to global warming, the warming of the mid-latitudes to which the Korean Peninsula belongs may be accelerated. The volume transport and temperature of the Tsushima Warm Current flowing into the East Sea through the Korea Strait also increased as the atmospheric radiative forcing increased.

Automated Image Matching for Satellite Images with Different GSDs through Improved Feature Matching and Robust Estimation (특징점 매칭 개선 및 강인추정을 통한 이종해상도 위성영상 자동영상정합)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1257-1271
    • /
    • 2022
  • Recently, many Earth observation optical satellites have been developed, as their demands were increasing. Therefore, a rapid preprocessing of satellites became one of the most important problem for an active utilization of satellite images. Satellite image matching is a technique in which two images are transformed and represented in one specific coordinate system. This technique is used for aligning different bands or correcting of relative positions error between two satellite images. In this paper, we propose an automatic image matching method among satellite images with different ground sampling distances (GSDs). Our method is based on improved feature matching and robust estimation of transformation between satellite images. The proposed method consists of five processes: calculation of overlapping area, improved feature detection, feature matching, robust estimation of transformation, and image resampling. For feature detection, we extract overlapping areas and resample them to equalize their GSDs. For feature matching, we used Oriented FAST and rotated BRIEF (ORB) to improve matching performance. We performed image registration experiments with images KOMPSAT-3A and RapidEye. The performance verification of the proposed method was checked in qualitative and quantitative methods. The reprojection errors of image matching were in the range of 1.277 to 1.608 pixels accuracy with respect to the GSD of RapidEye images. Finally, we confirmed the possibility of satellite image matching with heterogeneous GSDs through the proposed method.

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.

Analysis on Continuity between the 2015 Revised Elementary Intelligent Life Curric ulum and Sc ienc e Curric ulum for Grades 3-4 (2015 개정 초등학교 슬기로운 생활과 3~4학년 과학과 교육과정의 연계성 분석)

  • Park, Jisun;Chang, Jina;Jin, Ye Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.267-282
    • /
    • 2022
  • This study aims to analyze the continuity and sequence between the intelligent life curriculum for grades 1-2 and the science curriculum for grades 3-4 with a focus on knowledge and inquiry process skills. The results demonstrate that contents related to science in the intelligent life curriculum consisted of only 10 out of 32 elements. Five elements were related to the science curriculum for grades 3-4 and limited to the 'life sciences' area. Particularly, the intelligent life curriculum did not address topics related to 'matter' and 'motion and energy'. Developmental connection was established in the 'life sciences' area and dramatic changes were noted for the topics related to 'earth and space' area. In terms of inquiry process skills, the levels of observation, measurement, inference, and communication naturally increased, whereas a developmental connection was noted between the intelligent life and science curricula. Classification can be viewed as a developmental link; however, viewing the classification as scientific from the epistemic perspectives was insufficient. In the case of expectation, a gap was observed in both curricula due to the absence of expectation activities in the intelligent life curricula. The study discussed the implications for securing the connection between the intelligent life and science curricula on the basis of these results.

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

Analysis on Results and Changes in Recent Forecasting of Earthquake and Space Technologies in Korea and Japan (한국과 일본의 지진재해 및 우주이용 기술예측에 대한 최근의 변화 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • This study analyzes emerging earthquake and space use technologies from the latest Korean and Japanese scientific and technological foresights in 2022 and 2019, respectively. Unlike the earthquake prediction and early warning technologies presented in the 2017 study, the emerging earthquake technologies in 2022 in Korea was described as an earthquake/complex disaster information technology and public data platform. Many detailed future technologies were presented in Japan's 2019 survey, which includes largescale earthquake prediction, induced earthquake, national liquefaction risk, wide-scale stress measurement; and monitoring by Internet of Things (IoT) or artificial intelligence (AI) observation & analysis. The latest emerging space use technology in Korea and Japan were presented in more detail as robotic mining technology for water/ice, Helium-3, and rare earth metals, and manned station technology that utilizes local resources on the moon and Mars. The technological realization year forecasting in 2019 was delayed by 4-10 years from the prediction in 2015, which could be greater due to the Corona 19 epidemic, the declaration of carbon neutrality in Korea and Japan in 2020 and the Russo-Ukrainian War in 2022. However, it is required to more active research on earthquake and space technologies linked to information technology.

Europe's Space Exploration and Korea's Space Exploration Strategy from the Perspective of Science and Technology Diplomacy (과학기술외교 관점에서 바라본 유럽의 우주탐사와 우리나라 우주탐사전략)

  • Nammi Choe
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.195-205
    • /
    • 2022
  • Space exploration is an area where international cooperation takes place more actively than any other space activities such as Earth observation, communication and navigation. This is because a country cannot afford a huge budget to have full infrastructure for deep space exploration, such as a heavy launch vehicle, communication and energy infrastructure, and human habitats, and has learned that it is not sustainable. Korea expressed its willingness to join humanity's epic exploration journey by signing the Artemis Accords in 2021 and launching Danuri lunar orbiter in 2022. The beginning of space exploration means that Korea's space activities have expanded beyond the stage of focusing only on technology development to set norms necessary to accompany other countries and cooperate diplomatically to solve exposed problems. This paper analyzed European space policy and space exploration, which are most actively participating in the Artemis Program and exerting diplomatic power in the space field, from the perspective of science and technology diplomacy. The suggestions for Korea's space exploration strategy from the perspective of science and technology diplomacy were drawn by examining the international cooperation strategies in Europe's space activities ranging from space policy, space strategy, and space exploration program to project units.

First Report of Navicula spartinetensis (Bacillariophyceae) from Korean Tidal Flats Along with Its Distribution in Northeast Asia (한국 미기록종 Navicula spartinetensis (Bacillariophyceae)의 분류 및 분포)

  • KIM, HYESUK;KHIM, JONG SEONG;PARK, JINSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.4
    • /
    • pp.97-105
    • /
    • 2020
  • The genus Navicula, with its notably high species diversity, is one of the most important genera of the diatom assemblages of the tidal flats. In the present study, Navicula spartinetensis was firstly observed from Yellow Sea including both of Korean and Chinese tidal flats. Morphological description was also made based on the LM and SEM observation. Samples were collected from four locations in Korea, two in October 2006, one in July 2007, and one in July 2018, and seven location in China from June to July 2018. N. spartinetensis was firstly described by Sullvian & Reimer in 1975; Cells are lanceolate with narrow valve faces, 20-30 ㎛ long, 5-6 ㎛ wide, and the density of striae is 12-13 in 10 ㎛, and the terminal raphe ending curved in the same direction. N. spartinetensis has been previously reported from Europe and South America, and the present study has expanded its distribution to the Northeast Asia. In conclusion, the diversity of Korean marine benthic diatoms is still underestimated thus extensive further study of diatom taxonomy is needed.

A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant (하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구)

  • Kim Jin-Sam;Kim Kang-Joo;Hahn Chan;Hwang Gab-Soo;Park Sung-Min;Lee Sang-Ho;Oh Chang-Whan;Park Eun-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.