DOI QR코드

DOI QR Code

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission

우주과학임무를 위한 큐브위성 자기장 청결도 분석

  • Jo, Hye Jeong (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Jin, Ho (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Park, Hyeonhu (School of Space Research, Kyung Hee University) ;
  • Kim, Khan-Hyuk (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Jang, Yunho (School of Space Research, Kyung Hee University) ;
  • Jo, Woohyun (School of Space Research, Kyung Hee University)
  • Received : 2022.01.10
  • Accepted : 2022.01.28
  • Published : 2022.02.28

Abstract

CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

큐브위성은 기존의 인공위성과 마찬가지로 지구 관측뿐만 아니라, 우주탐사 분야에도 폭넓게 활용되는 인공위성 플랫폼이다. 또한 우주 공간물리현상을 관측하기 위한 자기장관측 임무에서도 다양한 형태로 제작되어 활용되고 있다. 자기장 측정의 경우, 일반적으로 위성의 자기 교란을 최소화하기 위해 자기장측정기가 위성 몸체로부터 멀리 떨어져 있다. 그러나 큐브위성과 같은 작은 위성의 경우 공간적인 제약으로 인해 자기장 센서의 위치 설정이 제한적이다. 이에 이 논문에서는 큐브위성에서 생성된 자기장 간섭을 추정하여 자기장 측정의 신뢰성에 얼마나 영향을 줄 수 있는지 분석하였다. 주요 잡음원으로는 상대적으로 높은 소비전력을 가진 반작용 휠과 자기 토크로드를 대상으로 조사하였다. 이러한 부품의 자기 쌍극자 모멘트는 제조업체의 데이터 시트에 제공된 정보를 사용하였다. 외부 자기장이 없는 공간에서 3 U 큐브위성 중간에 위치한 자기 토크로드의 잔류 모멘트의 영향은 위성의 몸체 최 외곽 끝에서 약 36,000 nT까지 나타날 수 있음을 확인했다. 또한, 1 nT 미만의 정확한 자기장 측정의 임무라면, 자력계는 위성 본체에서 약 0.6 m 반경 거리 외곽에 있어야 함을 알 수 있었다. 이러한 분석 방법은 자기장 측정을 수행하기 위해 CubeSat을 설계할 때 자기 청결도 분석의 중요한 역할이 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 2021 달 착륙선 자기장 측정기 개발 NRF-2020M1A3B7109194 지원을 받아 수행되었습니다.

References

  1. Heidt H, Puig-Suari J, Moore A, Nakasuka S, Twiggs R, CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation, in 14thAIAA/USU Conference on Small Satellites, Logan, UT, 21-24 Aug 2000.
  2. National Academies of Sciences, Engineering, and Medicine, Achieving Science with CubeSats: Thinking inside the Box (Academic Press, Washington, DC, 2016).
  3. Kulu E, Nanosatellite & CubeSat database (2022) [Internet], viewed 2022 Feb 2, available from: https://www.nanosats.eu/database
  4. Archer MO, Horbury TS, Brown P, Eastwood JP, Oddy TM, et al., The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer, Ann. Geophys. 33, 725-735 (2015). https://doi.org/10.5194/angeo-33-725-2015
  5. Lee J, Lee S, Lee JK, Lee H, Shin J, et al., Development of flight software for SIGMA CubeSat, J. Korean Soc. Aeronaut. Space Sci. 44, 363-372 (2016). https://doi.org/10.5139/jksas.2016.44.4.363
  6. Kang S, Song Y, Park SY, Nanosat formation flying design for SNIPE mission, J. Astron. Space Sci. 37, 51-60 (2020). https://doi.org/10.5140/JASS.2020.37.1.51
  7. Steyn WH, Hashida Y, In-orbit attitude performance of the 3-axis stabilised SNAP-1 nanosatellite, in 15th Annual AIAA/USU Conference on Small Satellites, Logan, UT, 13-16 Aug 2001.
  8. Lassakeur A, Underwood C, Taylor B, Duke R, Magnetic cleanliness program on CubeSats and nanosatellites for improved attitude stability, J. Aeronaut. Space Technol. 13, 25-41 (2020). https://doi.org/10.1109/RAST.2019.8767816
  9. Lassakeur A, Underwood C, Taylor B, Enhanced attitude stability and control for CubeSats by real-time on-orbit determination of their dynamic magnetic moment, in 69th International Astronautical Congress (IAC), Bremen, 1-5 Oct 2018.
  10. Bleier T, Clarke P, Cutler J, DeMartini L, Dunson C, et al., QuakeSat lessons learned: Notes from the development of a triple cubesat (QuakeFinder, Palo Alto, CA, 2003).
  11. Eagleson S, Attitude determination and control, detailed design, test, and implementation for CanX-2 and preliminary design for CanX-3 and CanX-45, Master's Thesis, Canada Toronto University (2006).
  12. Li J, Post M, Wright T, Lee R, Design of attitude control systems for CubeSat-class nanosatellite, J. Control Sci. Eng. 2013, 657182 (2013). https://doi.org/10.1155/2013/657182
  13. Amin J, Lightsey EG, The design, assembly, and testing of magnetorquers for a 1U CubeSat mission, Georgia Institute of Technology, AE 8900 MS Special Problems Report (2019).
  14. Ortner M, Bandeira LGC, Magpylib: A free Python package for magnetic field computation, SoftwareX. 11, 100466 (2020). https://doi.org/10.1016/j.softx.2020.100466
  15. Park HH, Jin H, Kim TY, Kim KH, Lee HJ, et al., Analysis of the KPLO magnetic cleanliness for the KMAG instrument, Adv. Space Res. 69, 1198-1204 (2022). https://doi.org/10.1016/j.asr.2021.11.015
  16. CubeSatShop (2022) NCTR-M002 magnetorquer rod [Internet], viewed 2022 Jan 27, available from: https://www.cubesatshop.com/product/nctr-m002-magnetorquer-rod/
  17. NanoAvionics (2022) CubeSat reaction wheels control system SatBus 4RW0 [Internet], viewed 2022 Jan 27, available from: https://nanoavionics.com/cubesat-components/cubesat-reaction-wheels-control-system-satbus-4rw/