• Title/Summary/Keyword: Earth construction material

Search Result 144, Processing Time 0.028 seconds

Usage of Indigenous Material for Sustainable Construction at Mae-Hae, Thailand - Focused on Rammed Earth Method - (태국 매해 지역에서의 지속가능한 건축재료 활용연구 - 흙다짐 공법을 중심으로 -)

  • Kim, Doo-Soon;Jeong, Sang-Mo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • Limited resources for construction material in the Mae-Hae region, a remote Northern Thailand, acted as an impetus to introduce a new way for constructing their dwellings. The new construction material brought new construction methodology, namely, using earth and bamboo which are indigenous materials, readily available for them to use. Using indigenous material at Mae-Hae region was most ecological and logical method for establishing sustainable dwellings both in terms of monetary and ecological reasons. Prior to the construction at Mae-Hae, Thailand, series of experimental tests on the strength of rammed earth were performed off site at our university and also brought soil samples from the actual job site at Mae-Hae for detailed soil analysis. Through the tests, integrity of the earth and characteristics of the soil were established to build a small senior citizen center as an example. This appropriate technology is expected to contribute to the sustainable construction at Mae-Hae.

The State of the Art and Architectural Environmental Property Evaluation of Earth Construction Material (주요 흙 건축재료 현황 및 건축환경 관련 물성 평가에 관한 연구)

  • Song, Seol-Young;Koo, Bo-Kyoung;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.83-91
    • /
    • 2006
  • As a demand for sustainable development rises, the preference for earth house (earth construction) increases gradually. However, there are few data for predicting and evaluating the thermal environment and indoor air quality of earth house. Thus, this study aims to measure thermal properties(thermal conductivity, density and specific heat) and pollutants emission intensities(formaldehyde and volatile organic compounds) of current main earth construction materials and make a comparison between earth and cement construction materials. As results, quantitative thermal properties and pollutants emission intensities of current main earth construction materials are shown.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Basic Train of Thoughts for the Construction of Low Cost Scenery Spots

  • Duanmu, Shan
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.213-218
    • /
    • 2001
  • To many developing countries like China, the practical way to constant development of city construction is low consuming. The basic methods of low-cunsuming landscape construction: 1) Low building consumption: Decreasing construction quantity. Using low-costing material. Designing low-consuming landscape. Reusing of building material. 2) Low energy consumption: Decreasing water consumption. Consuming and enrichment of earth fertilizer. Decreasing electrical consumption. 3) Low maintenance: Adapting natural material. Using local plants. Special design to decrease maintaining. Because of many reasons, China has not yet adapting Low-consuming Landscape Construction.

  • PDF

Earth Construction Interior Applied to Healing Space : Focused on Biophilic Design Concept of Oriental Medical Clinic Interior (치유공간에 적용한 흙건축 인테리어 -한의원인테리어의 바이오필릭(Biophilic)디자인개념을 중심으로-)

  • Jeon, Chan Hee;Hwang, Hey Zoo
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.42
    • /
    • pp.37-62
    • /
    • 2020
  • The earth is a natural material that has natural healing power,,as a natural ingredient, it brings environmental friendliness, emotional. In this Research, for one of the methods to expand the benefits as a healing space, Construction of the Earth design and earth construction methods have been actively used for effectiveness of the Earth in the construction of the interior with the oriental medical clinic. By utilizing the concept of biophilic design as a healing environment design, symbolizing nature such as color, light, plants, flowers, and natural materials such as earth and wood was directed as oriental medicine interiors. In addition, the space was divided according to the movement of patients and used different Earth construction method to each of the space for the distinction and differentiation according to the characteristics of each space. At this time, the Earth was constructed with materials and finishing materials that meet the highest grade of HB (Healthy Building), an eco-friendly building material certification grade without additives, so that the interior and medical treatment concept can be done at the same time. By using Earth as the basis of elements in the construction, and the design of healing space, patient the concept of Biophillic as a healing environment design. This may serve as a technical, aesthetic, and cultural basis for constructing a healing space by Earth in the future-oriented alternative, it may lead to necessity of eco-friendly and ecological architecture, and it may be an opportunity to expand the application area of earth in architectural design.

A Study on Sustainable Earth Architecture Characteristic from Ecological Aesthetic Point of View - Focus on the thoughts of Lao-tzu - (생태미학적 관점에서의 지속가능한 흙건축 특성에 관한 연구 - 노자사상을 중심으로 -)

  • Kim, Seol-Hyi;Hur, Bum-Pall
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • Fast industrialization caused from Descartes' dichotomy has enormously developed our world, but endangered the ecosystem. In this study, the ecosystem aesthetics is not only a critique against existing growth-ideology and technical civilization, but also the art pursuing the life as an artistic state and achieving the dream for qualitatively different new future. Lao-tzu's Natural Beauty assumes that the adaptation to natural laws can lead every purpose's achievement. Based on such theoretical alternative, the earth construction as a medium for coexisting mankind, nature and construction interacts with the other objects through the natural affinity, the energy efficiency, the material generation. The earth construction provides the images of naivety, naturalness, folk as well as emotional stability in cultural terms. This study's direction and method are as follows. First, it researches the ecosystem aesthetics from the Taoism viewpoint, the alternative for environmental healing based on theoretical reviews about the ecosystem aesthetics. Second, it researches the earth construction's ecosystem aesthetic features and construction features from the low-tech aspect in continual construction genealogy. Third, it analyzes some cases targeting domestic buildings by drawing out expression methods and features through the connectivity of earth construction and ecosystem aesthetics. The earth construction lies between the heaven and the earth, but coexists in natural cycle. The earth construction caused from ecosystem aesthetics will be a future alterative, and various studies about its features and methods should be continued.

APPLICATION OF USN TECHNOLOGY FOR MONITORING EARTH RETAINING WALL

  • Sungwoo Moon;Eungi Choi;Injoon Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.517-520
    • /
    • 2013
  • In construction operation, the temporary structure is used to support designed facilities or to provide work spaces for construction activities. Since the structure is used only during the construction operation, the operation may be given insufficient attention. The contractor is likely to try to save cost on the material and labor cost. This contractor's behavior frequently leads to construction accidents. In order to prevent accidents from the failure, the operation should be carefully monitored for identifying the effect of dynamics in the surrounding site area. Otherwise, any unexpected adversary effect could result in a very costly construction failure. This study presents the feasibility of the ubiquitous sensor network (USN) technology in collecting construction data during the construction operation of earth retaining walls. The study is based on the result at the Construction System Integration Laboratory (CSIL) at the Pusan National University. A USN-based system has been developed for monitoring the behavior of the temporary structure of earth retaining walls. The data collected from the sensors were used to understand the behavior of the temporary structure. The result of this study will be used in increasing the safety during the construction operation of retaining walls.

  • PDF

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

A Study of sea Dike meterials loss due to Scouring and Consolidation Settlement During the Periond of Construction on Construction on the West Cost of Korea (서해암 방조제 공사 기간중 유실토량 측정시험)

  • 안재숙
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2503-2519
    • /
    • 1972
  • The studies were carried out to find the cause and the quantitative evaluation of sea dike materials loss which is occured during the period of construction works for the tideland reclamation projects on the west coast of Korea. Major subjects to studies were to establish the typical relationships between the tidal flow and the movement of dike materials, the tidal-flow and the erosion, the dike materials and the ratio of material movement(losses), construction methods and the ratio of materials movement (losses). Based on the above subjects, the studies were made for the purpose of obtain the following informations; (1) Collecting and evaluaing the data of dike material losses due to foundation settlement, from designed existing dikes on the west coast. (2) By the field investigation at A-San Sea Dike, Pyong Taek Project, the Comparison would be made by the relationships between the tide velocity and the movement of dike foundation under the natural conditions and the period of construction so that find out the relationship between the dike materials of foundation situation and settlements. With regard to the dike construction works, it is so difficult to calculate the exact quantity of material losses due to the foundation settlements. The major factors that affect the settlement losses of the dike materials are: (1) Topographical variation (2) Swepting the sectional area of dike by the tide velocity. (3) Dumping riprap to the outerside of dike during the period of construction works. (4) Sectional area losses by the cause of occurence of the new tide channels. (5) material losses by the heavy storms. (6) Consolidation settlement by the foundation weakness. (7) Material losses by the earth materials by tide flow. Most hi호 material losses were occured by the Consolidation settlement due to the foundation weakness, the maximum tide velocities due to decrease the cross sectional area of the gaps and erosion of foundation due to the range of tide, Inner and outerside of dike, or dike material loses due to the tide flow. Final conclusion would be obtained by the continuous measurement of consolidation settlement at the stage of final clusure of the dike. (It is scheduled to close on the end of 1972) However, intermediate conclusion can be introduced as follows: (1) The estimation of material(losses) during the period of construction works for the existing sea-dikes up to date were only empirical. The material losses at the general closure for design was estimated at 10% of the riprap, 20% of the earth materials, and 20% of the riprap, 40% of the earth materials at the final closure of the dike. The final closure estimated double quantity to the general closure, but it is still doubt. (2) The ratio of consolidation settlements was found smaller than the calculated quantity. It can be foreseen that settlement speeds is higher thom the calculated speeds. (3) The movement of dike foundation under the natural conditions were not so depends on the geological conditions of the foundation. (4) When the tide velocities was estimated 100 at the normal tide, it was estimated 125 at the high tide and 55 at the low tide. The tide velocities at the low tide shows apparently lower than the high tide and the higher velocities at the deep water depth.

  • PDF

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF