• Title/Summary/Keyword: Earth Systems Education (ESE)

Search Result 11, Processing Time 0.026 seconds

The Development and Applying Effects of Systems Thinking Teaching Program for Improving Recognition of the Earth Systems in Elementary Science Education (초등과학교육에서 지구시스템 인식강화를 위한 시스템사고 교육 프로그램 개발 및 적용효과)

  • Moon, Byoung-Chan
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.3
    • /
    • pp.313-326
    • /
    • 2014
  • The purpose of this study is to explore the applying possibility of the Earth Systems Education(ESE) in elementary school science education through the improving of students' recognition with the earth systematic nature by systems thinking education - for this was the recognizing as earth systematic nature was the key element of ESE, and the systems thinking skill is accredited very effective tool for the understanding with earth systematic nature. For this, the systems thinking's teaching-learning programs were developed and applied to the 6th students (21s) for 10hours' classes. The results of this study are as follows; In most of the 6th students didn't recognize with earth systematic nature from a lack of understanding of the vapor being in every nature environments. In systems teaching-learning classes, most of students participated positively in learning activities and achieved the aim of a lesson. In the testing results for students' recognition improving to earth systematic nature after the systems thinking education, about 24% students were showed the improving results of the recognition with earth systematic nature. Consequently, It is suggested that just as the achieving of the points of ESE in elementary school science education, the approaching method of the systems thinking education is worth attempting to applying of the ESE.

Science Teacher's Perceptions and Orientations about Earth Systems Education: A Case Study (지구계 교육에 대한 과학 교사의 인식과 지향: 사례연구)

  • Lee, Jeong-A;Maeng, Seung-Ho;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.707-719
    • /
    • 2007
  • Teachers play key roles in classroom instruction. The perceptions and orientations of teachers about teaching have substantial effect on the practical context of science teaching. Analyzing science teacher's perceptions and orientations about Earth Systems Education (ESE) offers an opportunity to figure out how the goals of ESE might be dealt with. In this study, lesson plans developed by and in-depth interview results with two teachers were analyzed in terms of ESE perceptions. ESE orientations were also investigated in terms of teaching orientations and integration orientations. Research results showed that the teacher's deep understandings about 'Global Scientific Literacy (GSL)', the ultimate goal of ESE, precede the sound ESE teaching in the classroom. To enhance teachers' GSL, exemplary aspects of various integration, including networked integration, should be provided specifically to teachers. Also, the institutionalized approaches to developing ESE curriculum could help classroom teachers activate ESE teaching in their classroom.

An Analysis of Students' Cognitive Characteristics through a Drawing Activity in Teaching Module of the Earth Systems Education (지구계 수업 모듈 중 그리기 활동을 통한 학생들의 인지 특성 분석)

  • Oh, Hyun-Seok;Kim, Je-Heung;Yu, Eun-Jeong;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.96-110
    • /
    • 2009
  • The ESE (Earth Systems Education) teaching module was developed to teach an "Earth and Star" unit for the 8th grade (aged 14) students. The planet remodeling activity was developed as a sub-ESE teaching module. The main point of this activity was that students were supposed to remodel planets for life to live on. The purpose of this study was to visualize students' thought and to interpret their understandings through their drawings and writings. A framework of analysis with four categories was designed and applied to analyze students' cognitive structure. In order to explore students' cognitive contents, the analyzing factors were classified into two domains: subsystems of the earth systems and use of science & technology. Results revealed via the planet remodeling activity that students' cognitive characteristics were impacted by ESE activities such as Earth literacy.

Reaction of Student for the Field Application of ESE Program - Focusing on the Global Climate Game - (지구계교육 프로그램의 적용에 따른 학습자의 반응 - 지구 기후 게임을 중심으로 -)

  • Kang, Hyun-A;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.299-308
    • /
    • 2002
  • While the 7th national education curriculum is gradually proceeding, science education tries various teaching-learning method for integration in science education. The first purpose of this study is to investigate Earth Systems Education(ESE), which is approaching method to integrate science education, especially in its focus on planet Earth. Also, the second purpose is to know what the reactions of students are obtained after 'The Global Climate Game' in ESE active learning program is applied to the field. The results of this study are as follows; ESE is to propose the integrated approaching method of searching for natures and ESE teaching-learning method is to try to overcome fixed conventional teaching-learning method focus on the text book, and practical application of ESE teaching-learning method is that we can develope the student-emphasized instructional program through the discussional cooperation-teaming models, role-play instructional models. In this study, 'The Global Climate Game' found that was suitable of understanding about relating of atmosphere, hydrosphere, lithosphere and biosphere composing Earth System. Reaction of most students for ESE was showed a positive change of aspect affective region and ESE active learning program is more efficient to improve schoolwork achivement and students positive attitude toward science subject than conventional teaching-learning method. Thus if ESE active learning program is applied for a long time, the general positive attitude of students concerning science will be increased, and then the students is expected to extend the ability of application of science in their life.

A Qualitative Case Study of an Exemplary Science Teacher's Earth Systems Education Experiences

  • Lee, Hyon-Yong
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.500-520
    • /
    • 2010
  • The purposes of this case study were (1) to explore one experienced teacher's views on Earth Systems Education and (2) to describe and document the characteristics of the Earth Systems Education (ESE) curriculum provided by an exemplary middle school science teacher, Dr. J. All the essential pieces of evidence were collected from observations, interviews with the experienced teacher and his eighth grade students, informal conversations, document analysis, and field notes. The $NUD^*IST$ for MS Windows was used for an initial data reduction process and to narrow down the focus of an analysis. All transcriptions and written documents were reviewed carefully and repeatedly to find rich evidence through inductive and content analysis. The findings revealed that ESE provided a conceptual focus and theme for organizing his school curriculum. The curriculum offered opportunities for students to learn relevant local topics and to connect the classroom learning to the real world. The curriculum also played an important role in developing students' value and appreciation of Earth systems and concern for the local environment. His instructional strategies were very compatible with recommendations from a constructivist theory. His major teaching methodology and strategies were hands-on learning, authentic activities-based learning, cooperative learning, project-based learning (e.g., mini-projects), and science field trips. With respect to his views about benefits and difficulties associated with ESE, the most important benefit was that the curriculum provided authentic-based, hands-on activities and made connections between students and everyday life experiences. In addition, he believed that it was not difficult to teach using ESE. However, the lack of time devoted to field trips and a lack of suitable resource materials were obstacles to the implementation of the curriculum. Implications for science education and future research are suggested.

Taiwanese Science Curriculum Reform and Earth System Education

  • Chang, Chun-Yen
    • 한국지구과학회:학술대회논문집
    • /
    • 2003.09a
    • /
    • pp.3-10
    • /
    • 2003
  • Curriculum reform has been a significant emphasis for most of countries all over the world for the past few years. It was the first time for Taiwan to develop a new Science and Life Technology curriculum Standards (SaLTS) for grades 1 through 9 compulsory educations. The SaLTS features integrated science content with the aim at motivating students to learn science and encouraging students to apply science to their everyday life, which is practically well aligned with the philosophical essence and foundations of Earth Systems Education (ESE). This paper calls attention to the importance of the inclusion of ESE into the forthcoming science curricula of Taiwan and worldwide and provides some exemplary ESE-inspired curriculum and instructional modules that have been successfully implemented in the secondary schools of Taiwan. Hopefully, this paper can shed some lights on the future development of the ESE-based science curricula, instructional modules, and teacher preparation programs.

  • PDF

Understandings on the Cycle as a substance and ESE (지구계 교육과 소재로서 순환에 대한 이해)

  • Kim, Yun-Ji;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.951-962
    • /
    • 2009
  • Examining research papers and other texts on the subject, this study summarizes previous studies, with focus on circulation as a subtopic of Earth Systems Education. In relation to the Earth Systems unit included in the revised 10th-grade science textbook, this study explains the meaning of Earth Systems and the basic concepts of Earth System Science. It surveys the origin and application of Earth Systems Education, which developed primarily in the U. S., and introduces its objectives, concepts, and communicated content. It also reviews the contents of Earth Systems Education adopted in the Korean school curriculum, and provides a comparative analysis of the content on circulation appearing in Earth Science I textbooks. Finally, it is proposed that an understanding among educators of Earth Systems and of its necessity as a subject of education is imperative for Earth Systems Education to become firmly established as a compulsory component of the national school curriculum.

Global Science Literacy

  • Mayer, Victor J.
    • 한국지구과학회:학술대회논문집
    • /
    • 2003.09a
    • /
    • pp.15-17
    • /
    • 2003
  • Global Science Literacy is proposed as an international curriculum standard for science literacy. It is based on the science curriculum construct of Earth Systems Education, which has come out of the earth science education community in the United States. The presentation will briefly describe the nature of ESE, and include, if sufficient time, an audience participation simulation of mass extinction.

  • PDF

Analysis of Conceptions of Earth System Cycles as Perceived by College Students (대학생들이 인식하는 지구계 순환의 구성 개념 분석)

  • Kim, Yun-Ji;Jeong, Jin-Woo;Wee, Soo-Meen
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.963-977
    • /
    • 2009
  • The purpose of this paper is to identify college students' conceptions of the earth system cycles as learners of earth science education (ESE) and draw educational implications. An eight-week creative story writing project was held with 62 non-science students taking a general course on earth science. Their creative stories were categorized by analyzing the conceptions and types of cycle with a story mapping technique. The cycle conceptions of earth systems were expressed diversely into 32; most of the cycle types were circular and complex, while the others were branch-shaped and linear types that fail to complete the cycles. College students' conceptions of the earth system cycles is biased toward natural-abiotic systems; less than 30% of them are shown to be aware of all three categories: natural-abiotic, natural-biotic, and human systems. It is essential to diversify the content of education on earth system cycles and help learners develop systematic methods of thinking so that they will be able to recognize the impacts of feedback from human activities through ESE.

Middle School Students' Understanding about Earth Systems to Implement the 2009 Revised National Science Curriculum Effectively (2009 개정 과학과 교육과정의 효과적인 실행을 위한 중학생들의 지구계에 대한 이해)

  • Lee, Hyo-Nyong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.798-808
    • /
    • 2011
  • The purpose of this study was to explore middle school students' perceptions about earth systems in order to implement the 2009 revised national science curriculum effectively. A total of 1219 students participated in the survey and asked to determine their basic understandings about earth systems, self-reported knowledge level, and perceived significance level of the 23 earth systems concepts (contents). In relation to students' basic understandings about earth system, approximately 67% students reported that they didn't know about the term of the earth system. Atmosphere and hydrosphere were highly perceived as major component of earth system. However, cryoshere was perceived to be least familiar by the subjects. The findings also showed that students' self-reported knowledge level and significance level about major ESU#4, #5, #6 related concepts (contents) were significantly different by gender. Most of male students were more knowledgeable and perceived more significant than female students. Regarding the difference of the perceived significance level by grade, 10 out of 23 concepts were significantly different. Some implications for implementing the revised curriculum and school fields were discussed.