• 제목/요약/키워드: Earth's ionosphere

검색결과 29건 처리시간 0.03초

중·저위도 지구 전리권 현상 및 연구 현황 (Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research )

  • 김어진;김기남
    • 우주기술과 응용
    • /
    • 제3권3호
    • /
    • pp.239-256
    • /
    • 2023
  • 지구 전리권은 고층대기의 일부가 이온화되어 전파에 영향을 주는 플라즈마 상태로 존재하는 영역으로 통신과 관련하여 실생활에 직접적으로 영향을 주어 오랜 기간 연구되어온 분야이다. 고도에 따라 전자밀도를 이루는 주된 이온에 따라 D-층, E-층, F-층으로 구분되며, 전자 밀도에 비해 중성대기 밀도가 매우 커서 그 영향을 고려한 플라즈마로 기술되어야 한다. 또한 태양에서 시작되어 지표면에 이르는 영역까지 전리권 외부의 영향이 직접적으로 반영되는 영역으로 복잡하고 다양한 영역의 연구가 연관되는 분야이다. 본 논문에서는 지구 고층대기가 이온화되어 전리권을 형성하는 과정을 설명하고 중·저위도 전리권의 특성에 대해 소개하였다. 또한 현재까지 전리권과 관련하여 국내 연구자들이 참여한 연구를 소개하고 향후 전리권 연구 분야의 교류 활성화에 활용되기를 기대한다.

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

지구전류의 측정 -전리층 간접측정 모색 (Measurement of Earth's Current -Toward an indirect observation of Ionosphere)

  • 곽진영;김수용;고재준;권명석;최은호;이석형;김동진;민승현;박달;김동수;최자희
    • Journal of Astronomy and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.47-54
    • /
    • 1987
  • 지표근처에는 지상으로부터 100km 상공에 있는 전리층내에서 흐르는 $10^4A$ 정도의 전류에 의한 전자유도현상에 의하여 미약한 전류가 지표를 따라 흐른다. 지자기의 영향을 간접적으로 측정하기 위하여 지구전류를 측정하며 그 결과를 제시한다.

  • PDF

전파통신에서의 전리층 역할 (IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION)

  • 표유선;조경석;이동훈;김은화
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권2호
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Physics of the Earth's plasma sheet associated with substorm triggering

  • 이대영
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • The plasma sheet of the Earth's magnetosphere is a sheet of hot plasmas in the magnetotail region, dividing the two (northern and southern) lobes of the Earth's magnetic field. It is the key region that is often closely linked to various electromagnetic dynamics in the Earth's magnetosphere-ionosphere system. In particular, it is the region that is most crucial for substorms, which is one of the most dynamic phenomena in the Earth's magnetosphere. The question of substorm triggering remains highly controversial until today, and at the center of the controversy there are several critical physics issues of the plasma sheet. In this talk I will introduce some of the physics issues of the plasma sheet. The specific topics that this talk will cover are (i) the general properties of the plasma sheet, (ii) fast plasma jets and plasma transport problem, (iii) stability/instability problem, and (iv) effects of thin current sheet. I will also present some of our group's recent findings regarding these topics, as obtained by comprehensive analyses of various observational data. The level and content of this talk are designed to be comprehensible to not only space physicists but also the scientists in a related field such as solar and heliospheric physics.

  • PDF

화성 전리층 관측 탑재체 성능 분석 (Analysis of ionospheric payloads for Mars exploration)

  • 김어진;서행자;김주현;이주희
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.94-104
    • /
    • 2013
  • 태양계 내에서 지구와 가장 흡사한 환경을 가진 화성은 향후 인류의 정착을 목적으로 이에 필요한 화성 환경 연구가 꾸준히 이루어지고 있다. 낮 시간 화성 전리층은 전파의 반사를 통해 착륙선과 로버의 지상-지상 통신에 활용될 수 있다. 또한 화성 전리층 정보는 화성의 물 및 대기 진화와 연관된 정보를 제공한다. 이런 정보들은 전파통신 및 기후 연구에 활용된다. 화성 전리층은 화성탐사 초기의 Mariner, Mars, Viking 시리즈와 최근의 Mars Global Surveyor의 전파엄폐 방식으로 주로 관측되었으며 Mars Express에는 전파엄폐방식 기기 외에도 저주파 레이더, 플라즈마 분석기가 탑재되었고 Viking Lander의 현장측정 자료가 활용되어 왔다. 본 연구는 국내 우주탐사 기반기술 확보를 위해 탐사선 통신에 영향을 줄 화성 전리층의 관측기기 선정에 대비하여 해외사례를 분석하였다.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • 우주기술과 응용
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF