DOI QR코드

DOI QR Code

Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research

중·저위도 지구 전리권 현상 및 연구 현황

  • Eojin Kim (Natural Science Research Institute, Chungnam National University) ;
  • Ki-nam Kim (Department of Astronomy & Space Science, Chungnam National University)
  • 김어진 (충남대학교 자연과학연구소) ;
  • 김기남 (충남대학교 천문우주과학과)
  • Received : 2023.07.11
  • Accepted : 2023.08.04
  • Published : 2023.08.31

Abstract

The Earth's ionosphere is an area where part of the upper atmosphere is ionized and exists in a plasma state that affects radio waves. It is a field that has been studied for a long time as it directly affects real life in relation to communications. Depending on the altitude, it is divided into D, E, and F layers depending on the main ions that make up the electron density. The density of the neutral atmosphere is very large compared to the electron density, so it should be described as plasma taking that effect into account. It is an area where influences from outside the ionosphere are directly reflected, starting from the sun and extending to the earth's surface, and is a field that involves complex and diverse areas of research. In this paper, we explain the process by which the Earth's upper atmosphere is ionized to form the ionosphere and introduce the characteristics of the ionosphere at low and mid-latitudes. In addition, we introduce the research that domestic researchers have participated in related to the ionosphere to date and hope that it will be used to promote exchange in the field of ionospheric research in the future.

지구 전리권은 고층대기의 일부가 이온화되어 전파에 영향을 주는 플라즈마 상태로 존재하는 영역으로 통신과 관련하여 실생활에 직접적으로 영향을 주어 오랜 기간 연구되어온 분야이다. 고도에 따라 전자밀도를 이루는 주된 이온에 따라 D-층, E-층, F-층으로 구분되며, 전자 밀도에 비해 중성대기 밀도가 매우 커서 그 영향을 고려한 플라즈마로 기술되어야 한다. 또한 태양에서 시작되어 지표면에 이르는 영역까지 전리권 외부의 영향이 직접적으로 반영되는 영역으로 복잡하고 다양한 영역의 연구가 연관되는 분야이다. 본 논문에서는 지구 고층대기가 이온화되어 전리권을 형성하는 과정을 설명하고 중·저위도 전리권의 특성에 대해 소개하였다. 또한 현재까지 전리권과 관련하여 국내 연구자들이 참여한 연구를 소개하고 향후 전리권 연구 분야의 교류 활성화에 활용되기를 기대한다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원을 받아 수행되었습니다(NRF-2022R1A2C1092602).

References

  1. Kelley MC, The Earth's Ionosphere: Plasma Physics & Electrodynamics, 2nd ed. (Elsevier Science, Burlington, VT, 2009). 
  2. Lee C, Lee W, Ionospheric and upper atmospheric observations in Korea, J. Space Technol. Appl. 1, 199-216 (2021). https://doi.org/10.52912/jsta.2021.1.2.199 
  3. Jee G, Fundamentals of numerical modeling of the mid-latitude ionosphere, J. Astron. Space Sci. 40, 11-18 (2023). https://doi.org/10.5140/JASS.2023.40.1.11 
  4. Park YK, Kwak YS, Ahn BH, Park YD, Cho IH, et al., Ionospheric F2-layer semi-annual variation in middle latitude by solar activity, J. Astron. Space Sci. 27, 319-327 (2010), https://doi.org/10.5140/JASS.2010.27.4.319 
  5. Kim E, Chung JK, Kim YH, Jee G, Hong S, et al., A climatology study on ionospheric F2 peak over Anyang, Korea, Earth Planets Space. 63, 335-349 (2011). https://doi.org/10.5047/eps.2011.03.011 
  6. Jo E, Kim YH, Moon S, Kwak YS, Seasonal and local time variations of sporadic E layer over South Korea, J. Astron. Space Sci. 36, 61-68 (2019). https://doi.org/10.5140/JASS.2019.36.2.61 
  7. Jeong SH, Kim YH, Kim K, Manual scaling of ionograms measured at Jeju (33.4°N, 126.3°E) throughout 2012, J. Astron. Space Sci. 35, 143-149 (2018). https://doi.org/10.5140/JASS.2018.35.3.143 
  8. Kam H, Kwak YS, Yang TY, Kim YH, Kim J, et al., Characteristics of horizontal winds in the mesosphere and lower thermosphere region over Korean peninsula observed from the Korea astronomy and space science institute meteor radar, J. Astron. Space Sci. 38, 229-236 (2021). https://doi.org/10.5140/JASS.2021.38.4.229 
  9. Kim E, Jee G, Kim YH, Seasonal characteristics of the longitudinal wavenumber-4 structure in the equatorial ionospheric anomaly, J. Astron. Space Sci. 25, 335-346 (2008). https://doi.org/10.5140/JASS.2008.25.4.335
  10. Kwak YS, Kil H, Lee WK, Oh SJ, Ren Z, et al., Nonmigrating tidal characteristics in thermospheric neutral mass density, J. Geophys. Res. Space Phys. 117, A02312 (2012). https://doi.org/10.1029/2011JA016932 
  11. Kwak YS, Kil H, Lee WK, Yang TY, Variation of the hemispheric asymmetry of the equatorial ionization anomaly with solar cycle, J. Astron. Space Sci. 36, 159-168 (2019). https://doi.org/10.5140/JASS.2019.36.3.159 
  12. Chung JK, Yoo SM, Lee W, The first measurement of seasonal trends in the equatorial ionospheric anomaly trough at the CHUK GNSS site during the solar maximum in 2014, J. Astron. Space Sci. 33, 287-293 (2016). https://doi.org/10.5140/JASS.2016.33.4.287 
  13. Lee WK, Kil H, Paxton LJ, Tropical ionization trough in the ionosphere seen by swarm-a satellite, Geophys. Res. Lett. 45, 12,135-12,141 (2018). https://doi.org/10.1029/2018GL080286 
  14. Hong J, Kim YH, Lee YS, Characteristics of the ionospheric mid-latitude trough measured by topside sounders in 1960-70s, J. Astron. Space Sci. 36, 121-131 (2019). https://doi.org/10.5140/JASS.2019.36.3.121 
  15. Kil H, Lee WK, Are plasma bubbles a prerequisite for the formation of broad plasma depletions in the equatorial F region? Geophys. Res. Lett. 40, 3491-3495 (2013). https://doi.org/10.1002/grl.50693 
  16. Kil H, Paxton LJ, Jee G, Nikoukar R, Plasma blobs associated with medium-scale traveling ionospheric disturbances, Geophys. Res. Lett. 46, 3575-3581 (2019). https://doi.org/10.1029/2019GL082026 
  17. Kil H, The morphology of equatorial plasma bubbles: a review, J. Astron. Space Sci. 32, 13-19 (2015). https://doi.org/10.5140/JASS.2015.32.1.13 
  18. Kil H, The occurrence climatology of equatorial plasma bubbles: a review, J. Astron. Space Sci. 39, 23-33 (2022). https://doi.org/10.5140/JASS.2022.39.2.23 
  19. Kil H, Heelis RA, Paxton LJ, Oh SJ, Formation of a plasma depletion shell in the equatorial ionosphere, J. Geophys. Res. Space Phys. 114, A11302 (2009). https://doi.org/10.1029/2009JA014369 
  20. Kil H, Lee WK, Kwak YS, Oh SJ, Paxton LJ, et al., Persistent longitudinal features in the low-latitude ionosphere, J. Geophys. Res. Space Phys. 117, A06315 (2012). https://doi.org/10.1029/2012JA017570 
  21. Kil H, Lee WK, Kwak YS, Zhang Y, Paxton LJ, et al., The zonal motion of equatorial plasma bubbles relative to the background ionosphere, J. Geophys. Res. Space Phys. 119, 5943-5950 (2014). https://doi.org/10.1002/2014JA019963 
  22. Kil H, Kwak YS, Lee WK, Krall J, Huba JD, et al., Nonmigrating tidal signature in the distributions of equatorial plasma bubbles and prereversal enhancement, J. Geophys. Res. Space Phys. 120, 3254-3262 (2015). https://doi.org/10.1002/2014JA020908 
  23. Kil H, Lee WK, Paxton LJ, Origin and distribution of daytime electron density irregularities in the low-latitude F region, Geophys. Res. Space Phys. 125, e2020JA028343 (2020). https://doi.org/10.1029/2020JA028343 
  24. Kil H, Paxton LJ, Schaefer RK, Simultaneous detection of signatures of conjugate photoelectrons in the ionosphere and thermosphere, J. Geophys. Res. Space Phys. 127, e2021JA030121 (2022). https://doi.org/10.1029/2021JA030121 
  25. Kil H, Kwak YS, Lee WK, Miller ES, Oh SJ, et al., The causal relationship between plasma bubbles and blobs in the low-latitude F region during a solar minimum, J. Geophys. Res. Space Phys. 120, 3961-3969 (2015). https://doi.org/10.1002/2014JA020847 
  26. Park J, Mende SB, Eastes RW, Frey HU, Climatology of equatorial plasma bubbles in ionospheric connection explorer/far-ultraviolet (ICON/FUV) limb images, J. Astron. Space Sci. 39, 87-98 (2022). https://doi.org/10.5140/JASS.2022.39.3.87 
  27. Park J, Min KW, Kim VP, Kil H, Lee JJ, et al., Global distribution of equatorial plasma bubbles in the premidnight sector during solar maximum as observed by KOMPSAT-1 and defense meteorological satellite program F15, J. Geophys. Res. Space Phys. 110, A07308 (2005). https://doi.org/10.1029/2004JA010817 
  28. Lee WK, Kil H, Kwak YS, Paxton LJ, Zhang Y, et al., Equatorial broad plasma depletions associated with the enhanced fountain effect, J. Geophys. Res. Space Phys. 119, 402-410 (2013). https://doi.org/10.1002/2013JA019137 
  29. Lee WK, Kil H, Paxton LJ, Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite, Geophys. Res. Space Phys. 126, e2020JA028836 (2021). https://doi.org/10.1029/2020JA028836 
  30. Park J, Park SM, Investigation of ionospheric earthquake precursors using US-TEC data during the solar maximum of 2013-2015, J. Astron. Space Sci. 37, 61-68 (2020). https://doi.org/10.5140/JASS.2020.37.1.61 
  31. Yang TY, Kwak YS, Lee J, Park J, Choi S, et al., The first report on the afternoon E-region plasma density irregularities in middle latitude, J. Astron. Space Sci. 38, 135-143 (2021). https://doi.org/10.5140/JASS.2021.38.2.135 
  32. Lee HB, Kim YH, Kim E, Hong J, Kwak YS, et al., Where does the plasmasphere begin? Revisit to topside ionospheric profiles in comparison with plasmaspheric TEC from Jason-1, J. Geophys. Res. Space Phys. 121, 10,091-10,102 (2016). https://doi.org/10.1002/2016JA022747 
  33. Ham YB, Jee G, Lee C, Kwon HJ, Kim JH, et al., Observations of the polar ionosphere by the vertical incidence pulsed ionospheric radar at Jang Bogo station, Antarctica, J. Astron. Space Sci. 37, 143-156 (2020). https://doi.org/10.5140/JASS.2020.37.2.143 
  34. Jee G, Ham YB, Choi Y, Kim E, Lee C, et al., Observations of the aurora by visible all-sky camera at Jang Bogo station, Antarctica, J. Astron. Space Sci. 38, 203-215 (2021). https://doi.org/10.5140/JASS.2021.38.4.203 
  35. Park J, Luhr H, Kervalishvili G, Rauberg J, Stolle C, et al., Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation, J. Geophys. Res. Space Phys. 122, 1338-1359 (2017). https://doi.org/10.1002/2016JA023086 
  36. Kwak YS, Richmond A, Ahn BH, Cho KS, Contributions of heating and forcing to the high-latitude lower thermosphere: dependence on the interplanetary magnetic field, J. Astron. Space Sci. 27, 205-212 (2010). https://doi.org/10.5140/JASS.2010.27.3.205 
  37. Kwon HJ, Lee C, Jee G, Ham YB, Kim JH, et al., Ground-based observations of the polar region space environment at the Jang Bogo station, Antarctica, J. Astron. Space Sci. 35, 185-193 (2018). https://doi.org/10.5140/JASS.2018.35.3.185 
  38. Kim E, Jee G, Ji EY, Kim YH, Lee C, et al., Climatology of polar ionospheric density profile in comparison with mid-latitude ionosphere from long-term observations of incoherent scatter radars: a review, J. Atmos. Sol. Terres. Phys. 211, 105449 (2020). https://doi.org/10.1016/j.jastp.2020.105449 
  39. Shin Y, Lee E, Lee JJ, Analysis of field-aligned currents in the high-altitude nightside auroral region: cluster observation, J. Astron. Space Sci. 36, 1-9 (2019). https://doi.org/10.5140/JASS.2019.36.1.1 
  40. Jee G, Burns AG, Kim YH, Wang W, Seasonal and solar activity variations of the Weddell sea anomaly observed in the TOPEX total electron content measurements, J. Geophys. Res. Space Phys. 114, A04307. https://doi.org/10.1029/2008JA013801 
  41. Schunk R, Nagy A, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Atmospheric and Space Science Series, Cambridge, UK, 2009). 
  42. Rishbeth H, Garriott OK, Introduction to Ionospheric Physics (Academic Press, New York, NY, 1969). 
  43. Prolss GW, Physics of the Earth's Space Environment: An Introduction (Springer, Berlin, Germany, 2004). 
  44. Kallenrode MB, Space Physics: An Introduction to Plasma and Particles in the Heliosphere and Magnetospheres (Springer-Verlag, Berlin, Germany, 2004). 
  45. Hargreaves JK, The Solar-Terrestrial Environment (Cambridge University Press, Cambridge, UK, 1992). 
  46. Rishbeth H, Basic physics of the ionosphere: a tutorial review, J. Inst. Electron. Radio Eng. 58, S207-S223 (1988). https://doi.org/:10.1049/jiere.1988.0060 
  47. Kelley MC, The Earth's Ionosphere, Plasma Physics and Electrodynamics (Academic Press, San Diego, CA, 1989).