• Title/Summary/Keyword: Earth's ionosphere

Search Result 29, Processing Time 0.026 seconds

Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research (중·저위도 지구 전리권 현상 및 연구 현황 )

  • Eojin Kim;Ki-nam Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.239-256
    • /
    • 2023
  • The Earth's ionosphere is an area where part of the upper atmosphere is ionized and exists in a plasma state that affects radio waves. It is a field that has been studied for a long time as it directly affects real life in relation to communications. Depending on the altitude, it is divided into D, E, and F layers depending on the main ions that make up the electron density. The density of the neutral atmosphere is very large compared to the electron density, so it should be described as plasma taking that effect into account. It is an area where influences from outside the ionosphere are directly reflected, starting from the sun and extending to the earth's surface, and is a field that involves complex and diverse areas of research. In this paper, we explain the process by which the Earth's upper atmosphere is ionized to form the ionosphere and introduce the characteristics of the ionosphere at low and mid-latitudes. In addition, we introduce the research that domestic researchers have participated in related to the ionosphere to date and hope that it will be used to promote exchange in the field of ionospheric research in the future.

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Measurement of Earth's Current -Toward an indirect observation of Ionosphere (지구전류의 측정 -전리층 간접측정 모색)

  • Kwak, J.;Kim, S. Y.;Koh, J.;Kwon, M.;Choi, E.;Lee, S.;Kim, D.;Min, S.;Park, D.;Kim, D.;Choi, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 1987
  • Earth currents with 10~20 ${\mu}A$ flow due to a magnetic induction by large currents flowing through the ionosphere. In order to measure the behaviour of ionosphere indirectly, earth currents will be measured and the results will be reported.

  • PDF

IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION (전파통신에서의 전리층 역할)

  • PYO YOO SURN;CHO KYOUNGSEOK;LEE DONG-HUN;KIM EUNHWA
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Physics of the Earth's plasma sheet associated with substorm triggering

  • Lee, Dae-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • The plasma sheet of the Earth's magnetosphere is a sheet of hot plasmas in the magnetotail region, dividing the two (northern and southern) lobes of the Earth's magnetic field. It is the key region that is often closely linked to various electromagnetic dynamics in the Earth's magnetosphere-ionosphere system. In particular, it is the region that is most crucial for substorms, which is one of the most dynamic phenomena in the Earth's magnetosphere. The question of substorm triggering remains highly controversial until today, and at the center of the controversy there are several critical physics issues of the plasma sheet. In this talk I will introduce some of the physics issues of the plasma sheet. The specific topics that this talk will cover are (i) the general properties of the plasma sheet, (ii) fast plasma jets and plasma transport problem, (iii) stability/instability problem, and (iv) effects of thin current sheet. I will also present some of our group's recent findings regarding these topics, as obtained by comprehensive analyses of various observational data. The level and content of this talk are designed to be comprehensible to not only space physicists but also the scientists in a related field such as solar and heliospheric physics.

  • PDF

Analysis of ionospheric payloads for Mars exploration (화성 전리층 관측 탑재체 성능 분석)

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo-Hee
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.94-104
    • /
    • 2013
  • In solar system, Mars which has the most similar environment with the Earth has been steadily studied for the purpose of habitable environment for the future manned exploration and settlement. During the daytime, Martian ionosphere can be used for the ground-ground communications between lander and rover through the reflection of the radio wave from ionosphere. In addition, researches about Martian ionosphere provide the link of revolution of water and atmosphere. Martian ionospheric observations were performed by the occultation experiments onboard Mariner, Mars, Viking series during early Martian explorations as well as recent Mars Global Surveyor. Low frequency radar and plasma analyzer are on board Mars Express and Viking-1, 2 lander obtained the only vertical plasma density profile during their entry phase. In this paper, we studied the characteristics of scientific payloads observing Martian ionosphere and then analyzed the usability of ionospheric research according to the communication and climate on Mars.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF