• Title/Summary/Keyword: Early Forecasting

Search Result 144, Processing Time 0.03 seconds

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

레이더 관측자료를 이용한 호남지방의 국지강수변화에 관한 수치모의

  • Park, Geun-Yeong;Lee, Sun-Hwan;Ryu, Chan-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.182-187
    • /
    • 2005
  • The weather hazard by worldwide global warming rapidly increases year by year, and the damage becomes also enormous. especially, the damage by the random local severe rain in Korea is conspicuous. The forecast is difficult, because the random local severe rain arises by the complicated mechanism. However, local weather field in the Honam district where the weather hazard arises well is accurately grasped, and the systems that predict the local severe rain early are necessary. The purpose of this research is development of radar data assimilation observed at Jindo S-band radar. The accurate observational data assimilation system is required for meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system.

  • PDF

An Information-based Forecasting Model for Project Progress and Completion Using Bayesian Inference

  • Yoo, Wi-Sung;Hadipriono, Fabian C.
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.203-213
    • /
    • 2007
  • In the past, several construction projects have exceeded their schedule resulting in financial losses to the owners; at present there are very few methods available to accurately forecast the completion date of a project. These nay be because of unforeseen outcomes that cannot be accounted for earlier and because of deficiency of proper tools to forecast completion date of said project. To overcome these difficulties, project managers may need a tool to predict the completion date at the early stage of project development. Bayesian Inference introduced in this paper is one such tool that can be employed to forecast project progress at all construction stages. Using this inference, project managers can combine an initially planned project progress (growth curve) with reported information from ongoing projects during the development, and in addition, dynamically revise this initial plan and quantify the uncertainty of completion date. This study introduces a theoretical model and proposes a mathematically information-based framework to forecast a project completion date that corresponds with the actual progress data and to monitor the modified uncertainties using Bayesian Inference.

Development of Predictive Models for Subway Disaster Forecasting (지하철 재난 전조 예측 모델 개발)

  • Park, Mi Yun;Park, Wan Soon;Lee, Jeonghun;Kwon, and Se Gon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • In the previous research, the research on the development of subway disaster detection system that discovers the disaster early warning of the subway station disaster and the evacuation to the passengers based on the Internet of things. This paper as a follow-up study analyzes the sensor data installed in the station in real time to quickly detect the disaster. In particular, we developed a statistical methodology based on the Mahalanobis distance in consideration of the environment that varies depending on the installation location of the sensor during initial system construction.

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Mun-Il Ahn;Hyeon-Ji Yang;Sung-Chul Yun
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.290-298
    • /
    • 2024
  • K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

Cost Prediction Models in the Early Stage of the Roadway Planning and Designbased on Limited Available Information (가용정보를 활용한 기획 및 설계초기 단계의 도로 공사비 예측모델)

  • Kwak, Soo-Nam;Kim, Du-Yon;Kim, Byoung-Il;Choi, Seok-Jin;Han, Seung-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.4
    • /
    • pp.87-100
    • /
    • 2009
  • The quality of early cost estimates is critical to the feasibility analysis and budget allocation decisions for public capital projects. Various researches have been attempted to develop cost prediction models in the early stage of a construction project. However, existing studies are limited on its applicability to actual projects because they focus primarily on a specific phase as well as utilize restricted information while the amount of information collectable differs from one another along with the project stages. This research aims to develop two-staged cost estimation model for the schematic planning and preliminary design process of a construction projects, considering the available information of each phase. In the schematic planning stage where outlined information of a project is only available, the Case-Based Reasoning model is used for easy and rapid elicitation of a project cost based on the extensive database of more than 90 actual highway construction projects. Then, the representing quantity-based model is proposed for the preliminary design stage where more information on the quantities and unit costs are collectable based on the alternative routes and cross-sections of a highway project. Real case studies are used to demonstrate and validate the benefits of the proposed approach. Through the two-stage cost estimation system, users are able to hold a timely prospect to presume the final cost within the budge such that feasibility study as well as budget allocation decisions are made on effectively and competitively.

Estimation of the Source Adult Population for Agrotis ipsilon (Lepidoptera: Noctuidae) Appearing in Early Spring in Korea: An Approach with Phenology Modeling (국내에서 이른 봄 출현하는 검거세미밤나방 성충집단의 기원 추정: 페놀로지 모형을 통한 접근)

  • Sori Choi;Jinwoo Heo;Subin Kim;Myeongeun Jwa;Yonggyun Shin;Dong-Soon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • The black cutworm, Agrotis ipsilon (Hufnagel), is an important crop pest worldwide that feeds more than 80 plant species including cabbage, potato, maize, wheat and bean, and this moth is a typical pest attacking underground parts of crops. It has been known in farm booklets that the larvae of A. ipsilon overwinter in the soil in Korea, but no definitive data exist yet. This study was conducted to evaluate that the specific appearance time of A. ipsilon observed actually in the field could be explained when we assumed that this pest overwinters in a form of larvae or pupae. Degree day-based phenology models were applied for tracking forward or backward to find the predicted developmental stage which developed at a specific stage found in the field. As a result of the analysis, it was confirmed that an initial population could be established in a group that does not overwinter as larvae or pupae in Korea. In other words, the appearance of adults in early March to April could not be explained by the presence of domestic overwintering populations. Populations that overwinter as larvae or pupae in Korea were able to emerge as adults in June to July at the earliest. Therefore, the group of adults appearing in early spring is highly likely to be a population that migrated from outside Korea. Taken together, it was estimated that the colony of A. ipsilon in Korea would be formed by a mixture of a migrant population through long-distance migration and a overwintering population.

A Study on the Early Warning Model of Crude Oil Shipping Market Using Signal Approach (신호접근법에 의한 유조선 해운시장 위기 예측 연구)

  • Bong Keun Choi;Dong-Keun Ryoo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • The manufacturing industry is the backbone of the Korean economy. Among them, the petrochemical industry is a strategic growth industry, which makes a profit through reexports based on eminent technology in South Korea which imports all of its crude oil. South Korea imports whole amount of crude oil, which is the raw material for many manufacturing industries, by sea transportation. Therefore, it must respond swiftly to a highly volatile tanker freight market. This study aimed to make an early warning model of crude oil shipping market using a signal approach. The crisis of crude oil shipping market is defined by BDTI. The overall leading index is made of 38 factors from macro economy, financial data, and shipping market data. Only leading correlation factors were chosen to be used for the overall leading index. The overall leading index had the highest correlation coefficient factor of 0.499 two months ago. It showed a significant correlation coefficient five months ago. The QPS value was 0.13, which was found to have high accuracy for crisis prediction. Furthermore, unlike other previous time series forecasting model studies, this study quantitatively approached the time lag between economic crisis and the crisis of the tanker ship market, providing workers and policy makers in the shipping industry with an framework for strategies that could effectively deal with the crisis.

Why Culture Matters: A New Investment Paradigm for Early-stage Startups (조직문화의 중요성: 초기 스타트업에 대한 투자 패러다임의 전환)

  • Daehwa Rayer Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • In the midst of the current turbulent global economy, traditional investment metrics are undergoing a metamorphosis, signaling the onset of what's often referred to as an "Investment cold season". Early-stage startups, despite their boundless potential, grapple with immediate revenue constraints, intensifying their pursuit of critical investments. While financial indicators once took center stage in investment evaluations, a notable paradigm shift is underway. Organizational culture, once relegated to the sidelines, has now emerged as a linchpin in forecasting a startup's resilience and enduring trajectory. Our comprehensive research, integrating insights from CVF and OCAI, unveils the intricate relationship between organizational culture and its magnetic appeal to investors. The results indicate that startups with a pronounced external focus, expertly balanced with flexibility and stability, hold particular allure for investment consideration. Furthermore, the study underscores the pivotal role of adhocracy and market-driven mindsets in shaping investment desirability. A significant observation emerges from the study: startups, whether they secured investment or failed to do so, consistently display strong clan culture, highlighting the widespread importance of nurturing a positive employee environment. Leadership deeply anchored in market culture, combined with an unwavering commitment to innovation and harmonious organizational practices, emerges as a potent recipe for attracting investor attention. Our model, with an impressive 88.3% predictive accuracy, serves as a guiding light for startups and astute investors, illuminating the intricate interplay of culture and investment success in today's economic landscape.

  • PDF

Introduction of Optimum Navigation Route Assessment System based on Weather Forecasting and Seakeeping Prediction (기상 예보 및 내항성능을 고려한 최적 항로 평가 시스템의 도입)

  • Park Geon Il;Choi Kyong Soon;Lee Jin Ho;Kim Mun Sung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.61-70
    • /
    • 2004
  • This paper treats optimal route assessment system at seaway based on weather forecasting and wave measurement through observation. Since early times. captain & officer have been sailing to select the optimum route considering the weather ana ship status condition empirically. However. it is rare to find digitalized onboard route support system whereas weather fax or wave and swell chart are utilized for the officer. based on officer's experience. In this paper, optimal route assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA (estimated time of arrival) ana fuel consumption is evaluated for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Basically. the weather forecast is assumed to be prepared previously in order to operate this system.

  • PDF