• 제목/요약/키워드: Each Joint Motion

검색결과 504건 처리시간 0.033초

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법 (A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

경추의 전신조정술 관절치료가 관절가동범위에 미치는 영향 (The effect of motion according to general coordination manipulation treatment on cervical)

  • 김형수;김은영;구봉오;배성수
    • The Journal of Korean Physical Therapy
    • /
    • 제15권4호
    • /
    • pp.90-102
    • /
    • 2003
  • Purpose: The purpose of this study is to search effect that GCM joint treatment gets to range of motion of cervical, lumbar, trunk and anke. And cervical gets in ankle joint. Methods: Estimated body deformity using GCM body type assesment chart then measured range of motion of each region. After control group did as act freely after do experiment pre measurement control group did post measurement. After control group did as act freely after do experiment premeasurement, control group did postmeasurement. Each region was measured by measurer who each subject person differs. Experimental group did GCM joint treatment and all measurements each region by measurer who each subject person differs three times measure postmeasurement after premeasurement. When measure with each measurement, measured after leave and walk time interval for 10 minutes. Result: For the analysis of the result of experiment, the results is change amount comparison increased to keep in mind except cervical flexion and both ankle joint's dorsiflexion after experiment of experimental group. In experimental group, cervical, lumber and ankle joint of range of motion was significantly increased(p<.05).

  • PDF

신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어 (Redundant Robot Control by Neural Optimization Networks)

  • 현웅근;서일홍
    • 대한전기학회논문지
    • /
    • 제39권6호
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

관절낭 패턴의 임상적 적용과 한계 (Clinical Application and Limitations of the Capsular Pattern)

  • 임우택
    • 한국전문물리치료학회지
    • /
    • 제28권1호
    • /
    • pp.13-17
    • /
    • 2021
  • A normal range of motion is essential for performing activities of daily living. The capsular pattern is the proportional motion restriction in range of motion during passive exercises due to tightness of the joint capsule. Although the capsular pattern is widely referred to in clinical practice, there is no scientific evidence to support the concept. In this review, the appropriateness of the capsular pattern for evaluation of joint pathology was assessed. In the Textbook of Orthopaedic Medicine written by Cyriax, the capsular pattern did not specify how much reduction in angular motion is considered motion restriction. As the definition proposed initially was unclear, different methods have been used in previous studies investigating capsular pattern. In addition, the capsular pattern described all the major joints of the human body, but only the hip joint, knee joint, and shoulder joint were studied in experimental studies. Sensitivity and specificity were reported in one study and were meaningful in specific pathologies (loss of extension to loss of flexion). There was no consensus on the reliability and validity. In summary, the capsular pattern suggested by Cyriax or Kaltenborn is not supported or applies only to certain conditions. Various components around a joint complement each other and provide stability to the joint. It is recommended that the therapist perform multiple assessments rather than rely on a single assessment when evaluating joints.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

내반슬, 외반슬의 부정정렬이 하지에 미치는 영향 (The influence of the genu varum and the genu valgum on malalignment of the lower limb)

  • 문성기
    • 대한정형도수물리치료학회지
    • /
    • 제6권2호
    • /
    • pp.31-38
    • /
    • 2000
  • The influence of the genu varum and the genu valgum in two groups of twenty adult man with deformation on hip joint, knee joint, ankle joint is as follows. 1. Each and all, the statistics that measure tibiofemorial angle indicated the group of the genu varum 168 1.42 and the group of the genu valgum 193 2.21, that was more larger or smaller than normal angle 183 of tibiofemorial. The measure Q-Angle(patellofemorial) indicates the group of the genu varum 9 1.5, the genu valgum 19 2.3, that was larger or smaller than normal angle 13. 2. It showed that range of motion hip joint adduction in the group of the genu varum was more larger than normal range of motion hip joint abduction in the group of the genu valgum was more larger than normal range of motion, hip joint internal rotation in the group of the genu valgum was more larger than normal range of motion, hip joint external rotation in the group of the genu varum was more larger than normal range of motion. 3. range of motion knee joint flexion was simillar to two groups of the genu varum and the genu valgum. On tibial tortion of the leg, the group of the genu varum indicated medial tibial tortion, and the genu valgum indicated lateral tibial tortion. 4. Each groups of the genu varum and the genu valgum in plantarflexion and dorsiflexion of ankle joint. With peak angle, the group of the genu varum showed toe-in that was more smaller than normal angle, and the group of the genu valgum showed toe-out that was more larger than normal angle.

  • PDF

경추의 전신조정 관절치료가 좌우 관절가동범위에 미치는 영향 (The effect of left & right range of motion according to general coordination manipulation treatment on cervical)

  • 김형수;문상은;채정병;김은영
    • 대한물리치료과학회지
    • /
    • 제10권2호
    • /
    • pp.112-122
    • /
    • 2003
  • The purpose of this study is to search effect that GCM joint treatment gets to right and left range of motion of neck, lumbar, trunk and anke joint. Estimated body deformity using GCM body type assesment chart then measured range of motion of each region. After control group did as act freely after do experiment premeasurement control group did postmeasurement. Each region was measured by measurer who each subject person differs. Experimental group did GCM joint treatment and all measurements each region by measurer who each subject person differs three times measured. When measure with each measurement, measured after leave and walk time interval for 10 minutes. For the analysis of the resulr of experiment the results is change amount comparison increased to keep in mind except ankle joint's dorsiflexion before experiment of experimental group and control group(P<.05). Before an experiment and after an experiment of experimental group, differed to keep in mind in right and left comparison of neck rotation, dorsiflexion, plantaflexin of ankle joint in change amount comparison(P<.05). Neck lateral flexion appears and displayed significantly level right and left difference than rotation after experiment of experimental group(P<.05). Because dorsiflexion, plantefleaion of ankle joint became similar right and left significantly difference did not appear(P<.05).

  • PDF