• Title/Summary/Keyword: EVAPORATION

Search Result 3,553, Processing Time 0.024 seconds

Measurement and Analysis of Free Water Evaporation at HaeNam Paddy Field (해남 농경지에서의 자유 수면 증발 관측과 해석)

  • Han Jin-Su;Lee Bu-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.91-97
    • /
    • 2005
  • Class A evaporation pan has been used throughout the world to measure free water evaporation mainly by manual observation once a day. In this study, a new automatic water level measurement method is used for understanding of free water evaporation and numerical analysis. This new technique measures the weight of buoyancy bar in water, and does not need calibration because it is not affected by water density change with water temperature. Field observations of evaporation were made near Haenam Meteorological Station over paddy field located in southwestern Korea from 20 April to 30 May 2004 and the data from ten clear days (16 - 25 May) were used for this analysis. The observed total evaporation was about 50.7mm during this period whereas the estimated from an empirical equation was 50.4mm. As expected, the pan evaporation is well correlated with wind speed and the vapor pressure deficit between the water surface and the air.

Evaluation of the evaporation estimation approaches based on solar radiation (일사량에 기초한 증발량 산정방법들의 적용성 평가)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.165-175
    • /
    • 2016
  • In order to examine the applicability, the evaporation estimation approaches based on solar radiation are classified into 3 different model groups (Model groups A, B, and C) in this study. Each group is tested in the 6 study stations (Seoul, Daejeon, Jeonju, Busan, Mokpo, and Jeju). The model parameters of each model group are estimated and verified with measured pan evaporation data. The applicability of verified model groups are compared with results of Penman (1948) combination approach. Nash-Sutcliffe (N-S) efficiency coefficients greater than 0.663 in all study stations indicate satisfactory estimates of evaporation. On the other hand, in the model verification process, N-S efficiency coefficients greater than 0.526 in all study stations indicate also satisfactory estimates of evaporation. However, N-S efficiency coefficients in all study cases except Model groups B and C in Busan are less than those of Penman (1948) combination approach. Therefore, it is concluded in this study that the evaporation estimation approaches based on solar radiation have capability to replace Penman (1948) combination approach for the estimation of evaporation in case that some meteorological data (wind speed, relative humidity) are missing or not measured.

Influence of ITO-Electrode Deposition Method on the Electro-optical Characteristics of Blue LEDs (ITO 전극 형성 방법이 청색 발광 다이오드의 전기 광학적 특성에 미치는 영향)

  • Han, Jae-Ho;Kim, Sang-Bae;Jeon, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.43-50
    • /
    • 2007
  • We have investigated the electro-optical characteristics and reliability of LEDs with the Indium-Tin-Oxide (ITO) electrodes formed by different deposition methods: electron beam evaporation, sputtering, and hybrid method of electron beam evaporation and subsequent sputtering. The deposition method of the ITO electrode has significant influence on the electro-optical characteristics and reliability of LEDs. The LEDs with the ITO electrodes formed by sputtering and electron beam evaporation have problems caused by sputtering damage and increased electrical resistance, respectively, and the problems have been solved by the hybrid method.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Condensation and evaporation heat transfer characteristics of HFC-134a in a horizontal smooth and a micro-finned tube (수평 평활관과 마이크로핀 관내에서 HFC-134a의 응축 및 증발열전달 특성)

  • Lee, Sang-Cheon;Park, Byeong-Deok;Han, Un-Hyeok;Lee, Jae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1725-1734
    • /
    • 1996
  • Experimental condensation and evaporation heat transfer coefficients were measured in a horizontal smooth tube and a horizontal micro-finned tube with HFC-134a. The test sections are straight, horizontal tubes with have a 9.52mm outside diameter and about 5000mm long. The micro-finned tube had 60 fins with a height of 0.12mm and a spiral angle of 25.deg.. The condensation test section was a double-pipe type with counter flow configuration. The evaporation test section employed an electic heating method. Enhancement factors which is defined as a ratio of the heat transfer coefficient for micro-finned tube to that for smooth tube, varied from 1.3 to 1.6(mass flux:110~190kg/m$^{2}$s) for condensation and 1.2 to 1.5 (mass flux:70~160kg/m$^{2}$s) for evaporation. The experimental data of condensation and evaporation heat transfer coefficients were compared to several empirical correlations. Based on these comparisons, modified correlations of the condensation and evaporation heat transfer coefficient for both smooth and micro-finned tubes were proposed.

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Survey of High School Students' and Chemistry Teachers' Perceptions on Evaporation and Boiling in the Situations of Heating and Non-Heating (가열과 비가열 상황에서 증발과 끓음에 대한 고등학생과 화학전공 교사들의 인식 조사)

  • Cho, Mi-Jeong;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.527-536
    • /
    • 2004
  • This study researched 122 high school students?and 97 chemistry majored teachers?perceptions on evaporation and boiling compared heating and no heating situations. From the results, it was found that the teachers?thoughts of evaporation and boiling depend on the situation were stable, but students?thoughts were depend on the situations. The high school students thought evaporation as boiling on the situation of heating and thought boiling as evaporation on the situation of no heating. These phenomena were related to the explanations of science textbooks. In many textbooks, evaporation concept was explained in the situation of no heating and boiling concept was explained in the situation of heating.

Droplet Evaporation on Surf aces of Various Wettabilities (다양한 습윤성 표면 위에서의 액적 증발)

  • Song, Hyun-Soo;Lee, Yong-Ky;Jin, Song-Wan;Kim, Ho-Young;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

Geometry Effects of Capillary on the Evaporation from the Meniscus (모세관 단면 형상에 따른 계면 및 증발 특성)

  • Choi, Choong-Hyo;Jin, Songwan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries is much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four comers.