• Title/Summary/Keyword: EVAPORATION

Search Result 3,553, Processing Time 0.03 seconds

Evaluation of Equations for Estimating Pan Evaporation Considering Regional Characteristics (지역특성을 고려한 pan 증발량 산정식 평가)

  • Rim, Chang-Soo;Yoon, Sei Eui;Song, Ju Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.47-62
    • /
    • 2009
  • The climate change caused by global warming may affect on the hydro-meteorologic factor such as evaporation (IPCC, 2001). Furthermore, it is also necessary that the effect of climate change according to geographical condition on evaporation should be studied. In this study, considering geographical and topographical conditions, the 6 evaporation equations that have been applied to simulate annual and monthly pan evaporation were compared. 56 climatologic stations were selected and classified, basing on the geographical and topographical characteristics (urbanization, topographical slope, proximity to coast, and area of water body). The evaporation equations currently being used are applied. These evaporation equations are Penman, Kohler-Nordenson-Fox (KNF), DeBruin-Keijman, Priestley-Taylor, Hargreaves, and Rohwer. Furthermore, Penman equation was modified by calibrating the parameters of wind function and was verified using relative error. The study results indicate that the KNF equation compared best with the pan: relative error was 8.72%. Penman equation provided the next-best values for evaporation relative to the pan: relative error was 8.75%. The mass-transfer method (Rohwer) provided the worst comparison showing relative error of 33.47%. In case that there is a close correlation between wind function and wind speed, modified Penman equation provided a better estimate of pan evaporation.

Temporal and Spatial Variability of Precipitation and Evaporation over the Tropical Ocean

  • Yoo, Jung-Moon;Lee, Hyun-A
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • Temporal and spatial variability of precipitation (P), evaporation (E), and moisture balance (P-E; precipitation minus evaporation) has been investigated over the tropical ocean during the period from January 1998 to July 2001. Our data were analyzed by the EOF method using the satellite P and E observations made by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the Special Sensor Microwave/Imager (SSM/I). This analysis has been performed for two three-year periods as follow; The first period which includes the El Ni${\tilde{n}}$o in early 1998 ranges from January 1998 to December 2000, and the second period which includes the La Ni${\tilde{n}}$o events in the early 1999 and 2000 (without El Ni${\tilde{n}}$o) ranges from August 1998 to July 2001. The areas of maxima and high variability in the precipitation and in the P-E were displaced from the tropical western Pacific and the ITCZ during the La Ni${\tilde{n}}$o to the tropical middle Pacific during the El Ni${\tilde{n}}$o, consistent with those in previous P studies. Their variations near the Korean Peninsula seem to exhibit a weakly positive correlation with that in the tropical Pacific during the El Ni${\tilde{n}}$o. The evaporation, out of phase with the precipitation, was reduced in the tropical western Pacific due to humid condition in boreal summer, but intensified in the Kuroshio and Gulf currents due to windy condition in winter. The P-E variability was determined mainly by the precipitation of which the variability was more localized but higher by 2-3 times than that of evaporation. Except for the ITCZ (0-10$^{\circ}$N), evaporation was found to dominate precipitation by ${\sim}$2 mm/day over the tropical Pacific. Annual and seasonal variations of P, E, and P-E were discussed.

Mineralogy of Evaporation Residues and Geochemistry of Acid Mine Drainage in the Donghae Mine Area (동해탄광 일대 산성광산배수의 지화학적 특성 및 증발잔류물에 대한 광물학적 연구)

  • 김정진;김수진;김윤영
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.103-109
    • /
    • 2003
  • The mineralogy of material left after evaporation of acid mine drainage water is generally dependent on the chemical composition of the source water. The residues formed by the evaporation of acid mine water in the Dong-hae coal mine area consists mainly of gypsum (CaSO$_4${\circ}$2$H_2O$) with mine. amounts of alunogen (Al$_2$(SO$_4$)$_3$${\circ}$17$H_2O$) and hexahydrite (MgSO$_4$${\circ}$<.TEX>6$H_2O$). Gypsum was identified from both of the bottom precipitates and the evaporation residues of acid mine water. Alunogen, an aluminum sulfate hydrate, was also formed by evaporation and occurred as needle-like crystals. Aluminum is derived from chemical dissolution of alumine-silicate mineral such as pyre-phyllite, illite and chlorite in wasted rocks. Hexahydrite in evaporation residues occured as needle-like, fibrous, and acicular crystals and was associated with gypsum and alunogen.

EDDC deposition system for 100m long superconducting coated conductor (100m 급 초전도선재 제조용 EDDC 증착시스템)

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Ko, Rock-Kil;Yang, Ju-Saeng;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Dong-Woo;Park, Yu-Mi;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.18-19
    • /
    • 2005
  • EDDC(Evaporation using Drum in Dual Chamber) deposition system was manufactured for 100m long superconducting coated conductor. It is composed of reaction chamber, evaporation chamber and differential chamber. The drum is located across the differential and exposed to both of the evaporation chamber and the reaction chamber, and the tape is wound on the drum. The elements of superconducting material are co-evaporated from respective element boats in the evaporation chamber and deposited on the drum and reacted with oxygen in the reaction chamber. This process repeats by rotating the drum. When the total pressure of the reaction chamber was 5 mTorr, that of the evaporation chamber was $5{\sim}10^{-5}$Torr. This atmosphere can be achieved by means of differential pumping. There are four evaporator in the evaporation chamber. One is the radiation heating evaporator and the others are the high frequency induction evaporator. EDDC is one of promising methods for commercialization of superconducting coated conductor.

  • PDF

Evaporation kent transfer characteristics of R-290 and R-600a in the horizontal tubes (수평관내 R-290과 R-600a의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC(e.g. R290 and R600a), R-22 as a HCFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07 mm and 6.54 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4\;kg/m^2s$ and cooling capacity of $0.95{\sim}10.1\;kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of R-290 and R-600a was higher value than that of R-22. In comparison with R-22, the evaporation heat transfer coefficient of R-290 and 600a is approximately $56.7{\sim}70.1$ and $46.6{\sim}59.7%$ higher, respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well matched with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Study on Evaporation Heat Transfer of R-l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 열전달에 관한 실험적 연구)

  • 박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.845-854
    • /
    • 2004
  • The evaporation heat transfer coefficient for R-l34a, R-407C (a mixture of 23wt% R-32, 25 wt% R-125, and 52 wt% R-l34a) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the exchanger by four plates of commercial geometry with a corrugated sinusoid shape of a chevron angle of 45 degree. The effects of the mean vapor quality, mass flux, heat flux, and saturation temperature of different refrigerants on the evaporation heat transfer were explored in detail. Similar to the case of a Plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient in the plates is much higher than that in circular pipes. The present data show that the evaporation heat transfer coefficients of all refrigerants increase with the vapor quality. At a higher mass flux h, is higher than for the entire range of the vapor quality. Raising the imposed wall heat flux was found to slightly improve h$_{r}$, while h$_{r}$ is found to be lower at a higher refrigerant saturation temperature. A comparison of the performance of the various refrigerants reveals that R-410A has the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. Based on the present data, empirical correlations of the evaporation heat transfer coefficient were proposed.sed.

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Electrical Characteristics of Organic Light-emitting Diodes Fabricated by Varying a Hole-size in Evaporation Boat

  • Kim, Weon-Jong;Park, Young-Ha;Cho, Kyung-Soon;Hong, Jin-Woong;Shin, Jong-Yeol;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • Electrical characteristics of organic light-emitting diodes were investigated by varying a hole-size in evaporation boat in the device structure of ITO/tris(8-hydroxyquinoline) aluminum$(Alq_3)$/Al. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ Torr. The $Alq_3$ emitting organics were evaporated to be a thickness of 100 nm at a deposition rate of $1.5{\AA}/s$. A cylindrical-shaped evaporation boat was made out of stainless steel with a small size of hole on top of the boat. Several evaporation boats were made having a different hole size on top; 0.8 mm, 1.0 mm, 1.5 mm, and 3.0 mm. We found that when the hole size on top of the evaporation boat is 1.0 mm, the average roughness is rather smoother compared to the other ones. Also, luminance and external quantum efficiency are superior to the others. Compared to the ones from the devices made with the hole-size of 0.8 mm boat. The luminance and external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of seventy and thirty three, respectively. Also operating voltage is reduced to 2 V.

Experimental study on Effects of POE oil on R134a Evaporation Heat Transfer in Plate Heat Exchanger (판형열교환기에서 POE오일이 R134a 증발 열전달에 미치는 영향에 대한 실험적 연구)

  • Chang, Young Soo;Jang, Jae Kyoo;Kang, Byung Ha;Kim, Sukhyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.255-262
    • /
    • 2014
  • To investigate the effect of oil on evaporation heat transfer of plate heat exchanger, evaporation heat transfer experiment was carried out using experimental apparatus for micro gear pumped R134a-oil circulation. By varying oil circulation rate of POE oil from 0 to 5%, evaporation heat transfer performance of plate heat exchanger was investigated. As OCR(Oil Circulation Ratio) increases, the evaporation heat transfer coefficient of R134a decreases and pressure drop increases. When the evaporating temperature is $30^{\circ}C$ and the refrigerant mass flow rate is 80 g/s, evaporation heat transfer rate decreases by 10 % and pressure drop increases by 10% at 2% of OCR condition.

Assessment of Evaporation Rates from Litter of Duck House (오리사 바닥재의 수분 증발량 평가)

  • Lee, Sang-Yeon;Lee, In-Bok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Decano, Cristina;Kim, Jun-gyu;Choi, Young-Bae;Park, You-Me;Jeong, Hyo-Hyeog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.101-108
    • /
    • 2019
  • The domestic duck industry is the sixth-largest among the livestock industries. However, 34.3% of duck houses were the duck houses arbitrarily converted from plastic greenhouses. This type of duck house was difficult to properly manage internal air temperature and humidity environment. Humidity environment inside duck houses is an important factor that directly affects the productivity and disease occurrence of the duck. Although the humidity environments of litters (bedding materials) affect directly the inside environment of duck houses, there are only few studies related to humidity environment of litters. In this study, evaporation rates from litters were evaluated according to air temperature, relative humidity, water contents of litters, and wind speed. The experimental chamber was made to measure evaporation rates from litters. Temperature and humidity controlled chamber was utilized during the conduct of the laboratory experiments. Using the measured data, a multi linear regression analysis was carried out to derive the calculation formula of evaporation rates from litters. In order to improve the accuracy of the multi linear regression model, the partial vapor pressure directly related to evaporation was also considered. Variance inflation factors of air temperature, relative humidity, partial vapor pressure, water contents of litters, and wind speed were calculated to identify multicollinearity problem. The Multiple $R^2$ and adjusted-$R^2$ of regression model were calculated at 0.76 and 0.71, respectively. Therefore, the regression models were developed in this study can be used to estimate evaporation rates from the litter of duck houses.