• Title/Summary/Keyword: EVAPORATION

Search Result 3,557, Processing Time 0.032 seconds

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A (소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구)

  • Lee, Byungmoo;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

Assessment of Continuous Pressurization Method for Soil-water Characteristic Curve (연속 가압 함수특성 시험 평가에 관한 연구)

  • Park, Hyun-Su;Kim, Byeong-Su;Lee, Eo-Ryeong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.5-13
    • /
    • 2019
  • The soil-water characteristic curve (SWCC) plays an important role in determining the soil suction parameters required to predict the seepage or shear behaviors of unsaturated soils. In addition, path dependency of the SWCC affects the mechanical and hydrologic behaviors. In general, there is a disadvantage that it takes a long time to measure both the drying and wetting paths of the SWCC by a stepwise pressurization method. Thus, the continuous pressurization method as an improved testing method for the SWCC was suggested, and the testing time for two paths of the SWCC was significantly shorter than the conventional methods. For the applicability evaluation of this method, the results of the SWCC obtained by the stepwise pressurization method and the evaporation method in this study were compared to the result obtained from this method. As a result, it was found that the difference among three methods was negligible, and the testing time of the continuous pressurization method was greatly decreased. Therefore, it can be said that it is possible to quickly and accurately measure the SWCC under various conditions by the continuous pressurization method.

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress (건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향)

  • Jin, Eon-Ju;Yoon, Jun-Hyuk;Bae, Eun-Ji;Choi, Myung-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.196-207
    • /
    • 2019
  • This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficiency and Rate Performance (피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향)

  • Kim, Kyung Soo;Im, Ji Sun;Lee, Jong Dae;Kim, Ji Hong;Hwang, Jin Ung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.331-336
    • /
    • 2019
  • In this study, required properties and optimized procedure conditions for the pitch based soft carbon anode of lithium ion battery was investigated for improving the initial efficiency and rate performance. Each petroleum residue was thermally treated at 360, 370, and $410^{\circ}C$ for 3 hours to synthesis a pitch and the corresponding pitch shows the softening point of 86, 98, and $152^{\circ}C$, respectively. The elemental analysis and thermal characteristics of the pitch were investigated by EA analysis and TGA. It was noted that the low H/C and improved thermal stability were obtained with the high softening point. The obtained pitch was carbonized at $1,200^{\circ}C$ for 1 hour to produce a soft carbon based anode. As a result of investigating the crystal structure by XRD analysis, it was found that the crystallinity of soft carbon increased with increasing the softening point. It was considered that relatively higher boiling components and decreases in the evaporation component resulted the components participation for cyclization during the heat treatment process. The soft carbon based anode with an improved crystallinity shows the enhanced initial efficiency and rate performance. The mechanism of both improvements was also discusssed based on the developed crystal structure of soft carbon based anode materials.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea (울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석)

  • Hwang, Sang Koo;Lee, So-Jin;Han, Kee Hwan
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.513-527
    • /
    • 2018
  • We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.

Comparison of Total Phenolics, Total Flavonoids Contents, and Antioxidant Capacities of an Apple Cultivar (Malus domestica cv. Fuji) Peel Powder Prepared by Different Powdering Methods (분말가공법에 따른 국내산 사과껍질분말의 총페놀, 총플라보노이드 및 항산화능 비교)

  • Youn, So Jung;Rhee, Jin-Kyu;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at $60^{\circ}C$ or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.

Determination of the Coagulant Injection Methods for Efficient Treatment of Industrial Wastewater (산업폐수의 효율적 처리를 위한 응집제의 주입방법 결정)

  • Park, Se-Jin;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.570-575
    • /
    • 2018
  • The various of raw wastewater inflows to the industrial wastewater treatment plants everyday. This makes it difficult to operate the coagulation and flocculation efficiently as a pretreatment process for the industrial wastewater treatment. Additionally, it causes loads on evaporation and membrane facilities which are the posttreatment and alternative processes. For this reason, this study sampled raw wastewater before and after the NaOH injection. An experiment was conducted to compare the coagulation characteristics according to the methods of coagulant injection (single injection, simultaneous injection, consecutive injection, and inverse injection) aiming at efficient treatment of industrial wastewater. The coagulation experiment was conducted using a jar tester. The TDS removal efficiency by the coagulant injection methods increased in the order of consecutive injection (2.8 %) < single injection (3.9 %) < simultaneous injection(8.1 %) < inverse injection(9.6 %); the TOC removal efficiency grew in the order of single injection (84.3 %) < inverse injection (86.2 %) < consecutive injection (88.6 %) < simultaneous injection (89.1 %); the turbidity removal efficiency grew from single injection (99.7 %) < consecutive injection (99.8 %) ${\fallingdotseq}$ inverse injection (99.8 %) < simultaneous injection (99.9 %). These results show that the simultaneous inorganic coagulant-polymer coagulant injection method was more efficient than the consecutive injection method (inorganic coagulant ${\rightarrow}$ polymer coagulant).

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.