Browse > Article
http://dx.doi.org/10.7843/kgs.2019.35.9.5

Assessment of Continuous Pressurization Method for Soil-water Characteristic Curve  

Park, Hyun-Su (Dept. of Civil & Environment Engineering, Dankook Univ.)
Kim, Byeong-Su (Graduate School of Environment & Life Science, Okayama Univ.)
Lee, Eo-Ryeong (Dept. of Civil & Environment Engineering, Dankook Univ.)
Park, Seong-Wan (Dept. of Civil & Environment Engineering, Dankook Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.35, no.9, 2019 , pp. 5-13 More about this Journal
Abstract
The soil-water characteristic curve (SWCC) plays an important role in determining the soil suction parameters required to predict the seepage or shear behaviors of unsaturated soils. In addition, path dependency of the SWCC affects the mechanical and hydrologic behaviors. In general, there is a disadvantage that it takes a long time to measure both the drying and wetting paths of the SWCC by a stepwise pressurization method. Thus, the continuous pressurization method as an improved testing method for the SWCC was suggested, and the testing time for two paths of the SWCC was significantly shorter than the conventional methods. For the applicability evaluation of this method, the results of the SWCC obtained by the stepwise pressurization method and the evaporation method in this study were compared to the result obtained from this method. As a result, it was found that the difference among three methods was negligible, and the testing time of the continuous pressurization method was greatly decreased. Therefore, it can be said that it is possible to quickly and accurately measure the SWCC under various conditions by the continuous pressurization method.
Keywords
Soil-water characteristic curve (SWCC); Continuous pressurization method; Drying and wetting path;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Spanner, D. C. (1951), "The Peltier Effect and Its Use in the Measurement of Suction Pressure", Journal of Experimental Botany, Vol.2, No.5, pp.145-168.   DOI
2 Stannard, D. I. (1992), "Tensiometers-Theory, Construction, and Use", Geotechnical Testing Journal, Vol.15, No.1, pp.48-58.   DOI
3 Sun, Y., Ren, S., Ren, T., and Minasny, B. (2010), "A Combined Frequency Domain and Tensiometer Sensor for Determining Soil Water Characteristic Curves", Soil Science Society of America Journal, Vol.74, No.2, pp.492-494.   DOI
4 Toll, D. G., Lourenco, S. D. N., and Mendes, J. (2013), "Advances in Suction Measurements Using High Suction Tensiometers", Engineering Geology, Vol.165, pp.29-37.   DOI
5 Trantino, A. and Mongiovi, L. (2001), "Experimental Procedures and Cavitation Mechanisms in Tensiometer Measurements", Geotechnical and Geological Engineering, Vol.19, No.3, pp.189-210.   DOI
6 Wayllace, A. and Lu, N. (2012). "A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity", Geotechnical Testing Journal, Vol.35, No.1, pp.103-117.
7 Abe, H., Morimoto, H., Toyoda, T., Kosan, J., Kmijo, T., and Eiji, M. (2006), "Studies on New Test for the Water absorbency of Unsaturated Soils", Report. (in Japanese)
8 Bachmann, J. and van der Ploeg, R. R. (2002), "A Review on Recent Developments in Soil Water Retention Theory: Interfacial Tension and Temperature Effects", Journal of Plant Nutrition and Soil Science, Vol.165, No.4, pp.468-478.   DOI
9 Fredlund, D. G. and Rahardjo, H. (1993), "Soil mechanics for unsaturated soils", John Wiley & Sons Inc., New York.
10 Gee, G. W., Campbell, M. D., Campbell, G. S., and Campbell, J. H. (1992), "Rapid Measurement of Low Soil-Water Potentials Using a Water Activity Meter", Soil Science Society of America Journal, Vol.56, No.4, pp.1068-1070.   DOI
11 Hatakeyama, M., Kyono, S., and Kawahara, T. (2015), "Development of Water Retention Test Apparatus According to the Continuous Pressurization Method", Oyo Technical Report, No.34, pp.23-54. (in Japanese with English abstract)
12 Hilf, J. W. (1956), "An Investigation of Pore Water Pressure in Compacted Cohesive Soils", US Dept. of Interior Bureau of Reclamation, Tech. Mem. 654.
13 Hong, W. T., Jung, Y. S., Kang, S. H., and Lee, J. S. (2016) "Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System", Materials, Vol.9, No.12, pp. 1-15.
14 Liu, J. K., Chang, D., and Yu, Q. M. (2016), "Influence of Freeze-thaw Cycles on Mechanical Properties of a Silty Sand", Engineering Geology, Vol.210, No.5, pp.23-32.   DOI
15 Houston, S. L., Houston, W. N., and Wagner, A. (1994), "Laboratory Filter Paper Suction Measurements", Geotechnical Testing Journal, Vol.17, No.2, pp.185-194   DOI
16 Kato, S., Hatakeyama, M., Abe, H., Kim, B. S., and Takeshita, Y. (2016), "Measurement of Soil Water Characteristic Curve with Continuous Pressurization Method", The 4th Japan-Korea Joint Workshop on Unsaturated Soils, Okayama, Japan, pp.1-6.
17 Likos, W. J. and Lu, N. (2003), "An Automated Humidity System for Measuring Total Suction Characteristics of Clays", Geotechnical Testing Journal, Vol.26, No.2, pp.178-189.
18 Lourenco, S. D. N., Gallipoli, D., Toll, D. G., Augarde, C. E., and Evans, F. D. (2011), "A New Procedure for the Determination of Soil-water Retention Curves by Continuous Drying Using Highsuction Tensiometers", Canadian Geotechnical Journal, Vol.48, No.2, pp.327-335.   DOI
19 Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resources Research, Vol.12, No.3, pp.513-522.   DOI
20 Park, H., Song, Y., and Park S. (2017), "Predicted Hydraulic Behavior in In-Situ Soil Slope Using the Path-Dependent Soil Water Characteristic Curve", Journal of the Korean Geotechnical Society, Vol.33, No.4, pp.25-34.   DOI
21 Schindler, U. and Muller, L. (1980), "Simplifying the Evaporation Method for Quantifying Soil Hydraulic Properties", Journal of Plant Nutrition and Soil Science, Vol.169, No.5, pp.623-629.   DOI
22 Song, Y. S., Lee, N. W., Hwang, W. K., and Kim, T. H. (2010), "Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve", The Journal of Engineering Geology, Vol.20, No.3, pp.281-295.
23 Schindler, U., Muller, L., da Veiga, M., Zhang, Y., Schlindwein, S., and Hu, C. (2012), "Comparison of Water-retention Functions Obtained from the Extended Evaporation Method and the Standard Methods Sand/kaolin Boxes and Pressure Plate Extractor", Journal of Plant Nutrition and Soil Science, Vol.175, No.4, pp.527-534.   DOI
24 Singh, D. N. and Kuriyan, S. J. (2003), "Estimation of Unsaturated Hydraulic Conductivity Using Soil Suction Measurements Obtained by an Insertion Tensiometer", Canadian Geotechnical Journal, Vol.40., No.2, pp.476-483.   DOI