DOI QR코드

DOI QR Code

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land

육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구

  • Received : 2018.09.27
  • Accepted : 2018.12.04
  • Published : 2019.03.31

Abstract

The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

후쿠시마 원자력 발전소의 사고로 인해 일본 동부 지역에 다량의 방사성 핵종이 축적되었다. 이러한 방사성 물질은 숲, 도시, 하천, 호수를 포함한 넓은 범위에서 관측되고 있다. 방사성 세슘의 토양 입자에 강하게 흡착하는 특성 때문에 방사성 세슘은 침식된 토사와 함께 이동하여, 인구가 밀집한 하천 하류지역으로 그리고 연안으로 서서히 이동한다. 본 연구에서는 수생환경의 오염된 토사의 이동을 재현하기 위한 수치모델을 개발하고, 그 성과의 일부를 한국원자력연구원 내에 위치한 침식된 토사 관측 장비에서 관측된 결과와 비교하였다. 수집된 토사 시료의 입경 특성을 분석하기 위해서 표준 체분석과 이미지 분석법을 적용하였다. 수치 모델은 초기 포화도, 강우의 토사 침투율, 멀티 레이어, rain splash 등을 고려하여 현실의 강우에 따른 토사의 이동을 시뮬레이션 할 수 있도록 개발하였다. 2019년 연구에서는 수치모델에 나무에 의한 강우 쉴드 효과, 증발효과, 표면물의 쉴드 효과 등이 추가될 계획이다. 토사 유실 관측 장비를 2018년부터 월성 원전 인근에 설치해 지속적으로 관측 자료를 수집하고 있다. 이러한 관측자료를 기반으로 방사성 핵종의 강우, 하천, 연안으로 이동하는 장기 영향 평가 수치모델을 개발할 계획이다.

Keywords

References

  1. International Atomic Energy Agency, Guidelines for using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies, IAEATECDOC-1741, IAEA, Vienna (2014).
  2. M.A. Pratama, M. Yoneda1, Y. Shimada, Y. Matsui, and Y. Yamashiki, "Future Projection of Radiocesium Flux to the Ocean from the Largest River Impacted by Fukushima Daiichi Nuclear Power Plant", Sci. Rep., 5, 8408 (2015). https://doi.org/10.1038/srep08408
  3. H. Takata, K. Hasegawa, S. Oikawa, N. Kudo, T. Ikenoue, R.S. Isono, and M. Kusakabe, "Remobilization of Radiocesium on Riverine Particles in Seawater: The Contribution of Desorption to the Export Flux to the Marine Environment", Mar. Chem., 176, 51-63 (2015). https://doi.org/10.1016/j.marchem.2015.07.004
  4. H. Yamazaki, M. Ishida, R. Hinokio, Y.A.Yamashiki, and R. Azuma, "Spatiotemporal Distribution and Fluctuation of Radiocesium in Tokyo Bay in the Five Years following the Fukushima Daiichi Nuclear Power Plant (FDNPP) Accident", PLoS ONE, 13(3), e0193414 (2018). https://doi.org/10.1371/journal.pone.0193414
  5. K. Saito, "Features of Exposure Doses to the Public due to the Fukushima Accident", Global Environ. Res., 20, 67-72 (2016).
  6. L.D. Meyer and W.H. Wischmeier, "Mathematical Simulation of the Process of Soil Erosion by Water", Trans. ASAE, 12(6), 754-762 (1969). https://doi.org/10.13031/2013.38945
  7. N.W. Hudson, Field Measurement of Soil Erosion and Runoff, Issue 68, 121-126, Food and Agriculture Organization of the United Nations (1993).
  8. United States Department of Agriculture - Agricultural Research Service, Revised Universal Soil Loss Equation (RUSLE) - Welcome to RUSLE 1 and RUSLE 2 (2014).
  9. M. Fernandez-Raga, C. Palencia, S. Keesstra, A. Jordan, R. Fraile, M. Angulo-Martinez, and A. Cerda, "Splash Erosion : A Review with Unanswered Questions", Earth-Science Reviews, 171, 463-477 (2017). https://doi.org/10.1016/j.earscirev.2017.06.009
  10. H. Funaki, H. Hagiwara, and T. Tsuruta, "The Behavior of Radiocaesium Deposited in an Upland Reservoir After the Fukushima Nuclear Power Plant Accident", Materials Research Society Symp. Proc., 1665, 165-170 (2014).
  11. S. Mishra, H. Arae, A. Sorimachi, M. Hosoda, S. Tokonami, T. Ishikawa, and S.K. Sahoo, "Distribution and Retention of Cs Radioisotopes in Soil Affected by Fukushima Nuclear Plant Accident", J. Soil Sediment., 15(2), 374-380 (2014). https://doi.org/10.1007/s11368-014-0985-2
  12. International Atomic Energy Agency, Radionuclide Transport Dynamics in Freshwater Resources (Final results of a Co-ordinated Research Project 1997-2000, IAEA-TECDOC-1314), IAEA, Vienna (2002).
  13. N. Matsuda, S. Mikami, S. Shimoura, J. Takahashi, M. Nakano, K. Shimada, K. Uno, S. Hagiwara, and K. Saito, "Depth Profiles of Radioactive Cesium in Soil using A Scraper Plate over a Wide Area Surrounding the Fukushima Dai-ichi Nuclear Power Plant Japan", J. Environ. Radioact., 139, 427-434 (2015). https://doi.org/10.1016/j.jenvrad.2014.10.001
  14. S. Mishra, S.K. Sahoo, P. Bossew, A. Sorimachi, and S. Tokonami, "Vertical Migration of Radio-caesium derived from the Fukushima Dai-ichi Nuclear Power Plant Accident in Undisturbed Soils of Grassland and Forest", J. Geochem. Explor., 169, 163-186 (2016). https://doi.org/10.1016/j.gexplo.2016.07.023
  15. S. Jomaa, D.A. Barry, A. Brovelli, B.C.P. Heng, G.C. Sander, J.Y. Parlange, and C.W. Rose, "Rain Splash Soil Erosion Estimation in the Presence of Rock Fragments", CATENA, 92, 38-48 (2012). https://doi.org/10.1016/j.catena.2011.11.008
  16. P.I.A. Kinnell, "Raindrop Impact Induced Erosion Processes and Prediction: A Review", Hydrol. Process., 19(14), 2815-2844 (2005). https://doi.org/10.1002/hyp.5788
  17. R.P.C. Morgan, Soil Erosion and Conservation, 3rd ed., Blackwell Publishing, Oxford (2005).
  18. M. Ryzak, A. Bieganowski, and C. Polakowski, "Effect of Soil Moisture Content on the Splash Phenomenon Reproducibility", PLoS ONE, 10(3), e0119269 (2015). https://doi.org/10.1371/journal.pone.0119269
  19. G. Erpul, D. Gabriels, W.M. Cornelis, H. Samray, and T. Guzelordu, "Average Sand Particle Trajectory examined by the Raindrop Detachment and Wind-Driven Transport (RD-WDT) Process", Earth Surf. Process. Landf., 34(9), 1270-1278 (2009). https://doi.org/10.1002/esp.1814
  20. J.P. Terry and R.A. Shakesby, "Soil Hydrophobicity Effects on Rainsplash: Simulated Rainfall and Photographic Evidence", Earth Surf. Process. Landf., 18(6), 519-525 (1993). https://doi.org/10.1002/esp.3290180605
  21. A. Ghahramani, Y. Ishikawa, and S.M. Mudd, "Field Experiments Constraining the Probability Distribution of Particle Travel Distances during Natural Rainstorms on Different Slope Gradients", Earth Surf. Process. Landf., 37(5), 473-485 (2012). https://doi.org/10.1002/esp.2253
  22. T. Scholten, C. Geissler, J. Goc, P. Kuhn, and C. Wiegand, "A New Splash Cup to Measure the Kinetic Energy of Rainfall", J. Plant Nutr. Soil. Sci., 174(4), 596-601 (2011). https://doi.org/10.1002/jpln.201000349
  23. T. Kinouchi, K. Yoshimura, and T. Omata, "Modeling Radiocesium Transport from a River Catchment based on a Physically-based Distributed Hydrological and Sediment Erosion Model", J. Environ. Radioact., 139, 407-415 (2015). https://doi.org/10.1016/j.jenvrad.2014.07.022
  24. K. Iijima, T. Niizato, A. Kitamura, H. Sato, and M. Yui, "Present Condition of the Fukushima forest; FTRACE Project: Accumulation of the Scientific Evidences to Secure the Safety and Reassurances of the People", Japan Atomic Energy Agency. Accessed Aug. 10 2015. Available from: https://fukushima.jaea.go.jp/initiatives/cat01/pdf00/20__Iijima.pdf.
  25. S. Hayashi, "Migration and Accumulation of Radioactive Cesium in the Upstream Region of River Watersheds Affected by the Fukushima Daiichi Nuclear Power Plant Accident: A Review", Global Environ. Res., 20, 45-52 (2016).
  26. National Institute of Agricultural Sciences, "Korean Soil Information System", Korean Soil Information System, Accessed Nov. 1 2018. Available from: http://soil.rda.go.kr/geoweb/soilmain.do.
  27. G.W. Gee and J.W. Bauder, "Particle size analysis" in Methods of Soil Analysis: Part 1- Physical and Mineralogical Methods, 2nd ed., 383-411, American Society of Agronomy, Madison, WI, USA (1986).
  28. S.K. Chough, C.W. Rhee, Y.K. Sohn, and I.G. Hwang, Sedimentology, Woosung Press, Seoul (1995).
  29. International Atomic Energy Agency, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, IAEA-TRS-472, IAEA, Vienna (2009).
  30. N. Kamei-Ishikawa, K. Tagami, and S. Uchida, "Effect of Biological Activity due to Different Temperatures on Iodide Partitioning in Solid, Liquid, and Gas Phases in Japanese Agricultural Soils", J. Radioanal. Nucl. Chem., 295(3), 1763-1768 (2013). https://doi.org/10.1007/s10967-012-2096-0
  31. S.-H. Cheon, K. Ahn, and K.-D. Suh, "Beach Sand Grain Size Analysis using Commercial Flat-bed Scanner", J. Korean Soc. Coast. Ocean Eng., 25(5), 301-310 (2013). https://doi.org/10.9765/KSCOE.2013.25.5.301
  32. I. McCave and J.P.M. Syvitski, "Principles and Methods of Geological Particle Size Analysis", in: Principles, Methods and Application of Particle Size Analysis, J.P.M. Syviski ed., 3-21, Cambridge Univ. Press, Cambridge, UK (1991).
  33. L. Beuselinck, G. Govers, J. Poesen, G. Dregaer, and L. Froyen, "Grain Size Analysis by Laser Diffractometry: Comparison with the Sieve Pipette Method", CATENA, 32, 193-208 (1998). https://doi.org/10.1016/S0341-8162(98)00051-4
  34. G. Mertens and J. Elsen, "Use of Computer Assisted Image Analysis for the Determination of the Grain Size Distribution of Sands used in Mortars", Cement Concrete Res., 36(8), 1453-1459 (2006). https://doi.org/10.1016/j.cemconres.2006.03.004
  35. J.M.R. Fernlund, R.W. Zimmerman, and D. Kragic, "Influence of Volume Mass on Grain Size Curves and Conversion of Image Analysis Size to Sieve Size", Eng. Geol., 90(3-4), 124-137 (2007). https://doi.org/10.1016/j.enggeo.2006.12.007
  36. D.M. Rubin, "A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment", J. Sediment. Res., 74(1), 160-165 (2004). https://doi.org/10.1306/052203740160
  37. J.A. Warrick, D.M. Rubin, P. Ruggiero, J.N. Harney, A.E. Draut, and D. Buscombe, "Cobble Cam: Grain-size measurements of Sand to Boulder from Digital Photographs and Autocorrelation Analyses", Earth Surf. Process. Landf., 34(13), 1811-1821 (2009). https://doi.org/10.1002/esp.1877
  38. D. Buscombe, D.M. Rubin, and J.A. Warrick, "Universal Approximation of Grain Size from Images of Non-Cohesive Sediment", J. Geophys. Res., 115, F02015 (2010).
  39. L. Hejduk and K. Banasik, "Variation in Suspended Sediment Grain Sizes in Flood Events of a Small Lowland River, Sediment Dynamics for a Changing Future", IAHS Publication, 337, 189-196 (2010).
  40. A.D. Switzer and J. Pile, "Grain size analysis", in: Handbook of Sea Level Research, I. Shennan, A.J. Long, and B.P. Horton eds., 1st ed., 331-346, John Wiley and Sons, Ltd. (2015).
  41. D. Buscombe and D.M. Rubin, "Advances in the Simulation and Automated Measurement of Well-Sorted Granular Material, Part 2: Direct Measures of Particle Properties", J. Geophys. Res., 117, F02002 (2012).
  42. W.J. Rawls, D.L. Brakensiek, and K.E. Saxton, "Estimation of Soil Water Properties", Trans. ASAE, 25(5), 1316-1320 (1982). https://doi.org/10.13031/2013.33720
  43. M.J. Lighthill and G.B. Whitham, "On Kinematic Waves. I: Flood Movement in Long Rivers. II: A Theory of Traffic Flow on Long Crowded Roads", Proc. of the Royal Society, vol. 229, 281-345, May 10, 1955, London.
  44. M.A. Mohamadi and A. Kaviann, "Effects of Rainfall Patterns on Runoff and Soil Erosion in Field Plots", Int. Soil Water Conserv. Res., 3(4), 273-281 (2015). https://doi.org/10.1016/j.iswcr.2015.10.001
  45. T. Piacentini, A. Galli, V. Marsala, and E. Miccadei, "Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy", Water, 10(10), 1314 (2018). https://doi.org/10.3390/w10101314

Cited by

  1. 월성 원전 주변 수생 환경 자료 구축 vol.17, pp.2, 2019, https://doi.org/10.7733/jnfcwt.2019.17.2.235