• Title/Summary/Keyword: EVAPORATION

Search Result 3,553, Processing Time 0.029 seconds

Tubular-shaped ZnO Crystals by Thermal Evaporation Technique in Air (공기 중에서 열증발법에 의하여 제작된 튜브 형상의 ZnO 결정)

  • Lee, Jung-Hun;Lee, Geun-Hyoung;Nahm, Choon-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.141-145
    • /
    • 2014
  • Tubular-shaped ZnO crystals were synthesized by thermal evaporation technique under air atmosphere. Mixture of Zn and Mg powder was used as the source material. The thermal evaporation and oxidation of Zn/Mg mixture were carried out for 1 hr at $1,000^{\circ}C$ and $1,200^{\circ}C$ under in air under atmospheric pressure. When only Zn powder was used as a source material, tetrapod-shaped ZnO crystals were synthesized. This provides that Mg played a key role in the formation of the tubular-shaped crystals. SEM images showed that the tubular-shaped ZnO crystals grew along [0001] direction. XRD spectrum revealed that the ZnO tubes had hexagonal wurtzite structure. Two emission peaks at 380 nm and 510 nm were observed in the room temperature cathodoluminescence spectrum.

Comparison between Superconducting Thin Films Fabricated by Using the Sputtering and the Evaporation Method (스퍼터링 법과 증발 법으로 제작한 초전도 박막의 비교)

  • Cheon, Min-Woo;Park, No-Bong;Yang, Sung-Ho;Park, Yong-Pil;Kim, Hye-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.39-42
    • /
    • 2004
  • The $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the sputtering method was compared with the $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the evaporation method. In doing the ultra-low deposition because each element can exist on the substrate surface, both the sputtering method and the evaporation method could easily fabricate single phase of the Bi2212 phase. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Study on CeO2 Single Buffer on RABiTS for SmBCO coated Conductor (SmBCO 초전도 층착을 위한 RABiTS상의 CeO2 단일 버퍼 연구)

  • Kim, Tae-Hyung;Kim, Ho-Sup;Lee, Nam-Jin;Ha, Hong-Soo;Ko, Rock-Kil;Ha, Dong-Woo;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Kyung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.546-549
    • /
    • 2007
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost. Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. 100 nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $1\;{\mu}m-thick$ SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-5%W substrate. Critical current of 90 A/cm was obtained for the SmBCO coated conductors.

The study was to analyze the effect of various ultrasound transmission media (초음파 투과성 매질들의 여러 특성에 관한 연구)

  • Ghang, Goon-Yong;Kim, Young-Bae
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2002
  • Ultrasound has been found useful as a therapeutic modality for the reduction of muscular and tendinous spasm. It has also been utilized for pain and other pathologic conditions through the ability of soundwaves to introduce molecules of chemical substances through the skin by a process. Choice of the transmission medium is very important for effective ultrasound treatment in clinical field. The purpose of this study was to analyze the effects of various ultrasound conduction media in regard to ultrasound conductivity and degree of absorption, evaporation and of skin irritation. The media used in this study were Antiphlamine, Sacch lotion, Stereogel, Trastgel, Antiphlamine S lotion, and Mentholatum lotion that have been used in clinical medicine. The study revealed that Antiphlamine was not compatible with a good ultrasound transmitter. Other media excluding Antiphlamine were compatible with a good ultrasound conductor, but they had some drawback with their nature of higher absorption, evaporation and skin irritation. The medium that was prepared by mixing of Antiphlamine with Gel in 1 to 10 ratio was a good ultrasound transmitter and extents of absorption and evaporation and of skin irritation of it were less than the other media.

  • PDF

Effects of flow direction on the performance of an indirect evaporative cooler (유동 방향이 간접 증발식 냉각기 성능에 미치는 영향)

  • Choo, Hyun-Seon;Lee, Kwan-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.743-748
    • /
    • 2006
  • Ren et al. analyzed the performance of the indirect evaporative cooler according to the direction of the flow considering evaporation water flow and wetness. However the effect of NTU of each channel on the performance of the indirect evaporative cooler according to the direction of the flow was not analyzed exactly. In this study the effect of the direction of the flow on the Indirect evaporative cooling performance changing NTU of each channel are investigated theoretically. The cooling process of the indirect evaporative cooler by flow direction is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and evaporation water. Based on the exact solution in the case of different NTU of each channel, we study the change of the distribution of the temperature according to each flow direction and at the same time analyze the effect of the flow direction on the cooling performance.

  • PDF

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Electrode-Evaporation Method of III-nitride Vertical-type Single Chip LEDs

  • Kim, Kyoung Hwa;Ahn, Hyung Soo;Jeon, Injun;Cho, Chae Ryong;Jeon, Hunsoo;Yang, Min;Yi, Sam Nyung;Kim, Suck-Whan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1346-1350
    • /
    • 2018
  • An electrode-evaporation technology on both the top and bottom sides of the bare vertical-type single chip separated from the traditional substrate by cooling, was developed for III-nitride vertical-type single chip LEDs with thick GaN epilayer. The post-process of the cooling step was followed by sorting the bare vertical-type single chip LEDs into the holes in a pocket-type shadow mask for deposition of the electrodes at the top and bottom sides of bare vertical-type single chip LEDs without the traditional substrate for electrode evaporation technology for vertical-type single chip LEDs. The variation in size of the hole between the designed shadow mask and the deposited electrodes owing to the use of the designed pocket-type shadow mask is investigated. Furthermore, the electrical and the optical properties of bare vertical-type single chip LEDs deposited with two different shapes of n-type electrodes using the pocket-type shadow mask are investigated to explore the possibility of the e-beam evaporation method.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Evaporation and stabilization of the heavy metals in EAF dust-clay bodies (EAF 더스트-점토계 소지의 중금속 휘발 및 안정화)

  • Kim, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • The evaporation amounts of volatile Cd, Pb and Zn were characterized by measuring their total concentrations in the EAF dust-clay bodies with various mixing ratio and heat treatment temperature. TCLP test was conducted for evaluating the chemical stabilities of the heavy metal elements. Evaporation amounts and leaching concentrations of heavy metal components were strongly dependent on the mixing ratio and heat treatment temperature. The evaporation of the heavy metal components in EAF dust was effectively suppressed by increasing the clay content. The leaching concentrations of heavy metal components were decreased with increasing clay content and temperature. 20 wt% EAF dust-80 wt% clay sample shows nearly zero evaporation and leaching concentrations of heavy metal components. XRD analysis showed that peak intensities of major crystalline phases such as franklinite and quartz were decreased with increasing the heat treatment temperature which means that the stabilization mechanism of the heavy metals was related with the vitrification process of the $SiO_2$ in the clay.

Development of System for Measuring Evaporation Rate through Porous Medium in Fuel Cells (연료전지 다공성막을 통한 수분증발량의 정량적 측정에 관한 실험적 연구)

  • Kim, Jong-Rok;Kim, Moo-Hwan;Son, Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.579-582
    • /
    • 2012
  • Removing residual water in a fuel cell is a critical operational process for managing its performance and controlling its lifetime. Understanding the mechanism of water transport in fuel cells is essential for the design of the water removal process. In this study, an experimental method for measuring the water evaporation rate through a gas diffusion layer, which is a porous medium, under steady-state conditions was developed. Experimental bench tests were conducted to apply the developed method. Then, the effects of various parameters of the drying gas and the gas diffusion layer were experimentally measured. The water evaporation rate increased as the humidity of the drying gas decreased and the flow rate of the drying gas increased. In addition, a thinner gas diffusion layer yielded a higher water evaporation rate.