• 제목/요약/키워드: ESEM

검색결과 37건 처리시간 0.03초

Shrinkproofing of Wool Fabrics by Pulse Corona Discharge and Enzymes

  • Cho, Sung-Mi;Toru Takagishi;Mitsuru Tahara
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.96-96
    • /
    • 2003
  • In this article modification of wool fibers and fabrics by pulse corona discharge and enzymes, in particular purified keratinase with a single component has been carried out to improve their surface properties. The shrinkproofing, tensile strength, weight loss, and the primary hand values calculated from the mechanical properties of the dual treated wool fabrics were investigated. In addition, the surface morphology of wool fiber was observed under the dry and wet conditions using an environmental SEM, ESEM.

  • PDF

해양환경하에 노출된 콘크리트 구조물의 침식평가 (Evaluation on Deterioration of Concrete Structure under Marine Environment)

  • 문한영;김성수;김홍삼;이승태;권태석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.399-402
    • /
    • 2000
  • When concrete structures are built in marine environment, they may be deteriorated and have the poor durability and quality caused by steel corrosion or by chemical attack of magnesium or sulfate ions. Especially, Mg ions contained in seawater make concrete surface weaken by chemical reaction with $Ca(OH)_2$ In this study, a concrete structure built in 1947 was investigated to estimate the factors, especially chemical attack, which can cause concrete to deteriorate. Furthermore, the instrumental analysis methods such as XRD and ESEM were performed to find the reactants in concrete under marine environment.

  • PDF

폴리머 기판상의 Al-doped ZnO 박막의 두께에 따른 특성 변화 (Thickness Dependance of Al-doped ZnO Thin Film on Polymer Substrate)

  • 김봉석;김응권;강현일;이규일;이태용;송준태
    • 한국진공학회지
    • /
    • 제16권2호
    • /
    • pp.105-109
    • /
    • 2007
  • 본 논문에서는 AZO 박막 두께 변화에 따른 구조적, 전기적, 광학적 특성의 영향에 대하여 연구하기 위하여 폴리카보네이트(PC : polycarbonate) 기판 위에 DC 스퍼터링법으로 증착시간을 변화시켜 박막의 두께를 조절하였다. 박막의 두께는 100 nm에서 500 nm까지 100 nm단위로 실험하였으며, 제작된 AZO 박막의 비저항 특성은 four point probe system를 이용하여 측정하였고, 박막의 입자크기, 표면상태를 Environment Secondary Electron Microscopy (ESEM)으로 관찰하였다. 또한 AZO 박막의 결정상태를 조사하기 위하여 High Resolution X-Ray Diffractometer (HR-XRD)를 이용하였고 광학적 투과도는 UV-visible spectrophotometer를 이용하여 분석하였다. 실험 결과 모든 박막에서 90% 이상의 광투과도를 보였으며 400 nm과 500 nm 두께의 AZO 박막에서는 $4.5{\times}10^{-3}\;{\Omega}-cm$의 비저항과 3.61 eV의 광밴드갭 에너지를 보였다.

Comparative Evaluation of Mn(II) Framework Substitution in MnAPSO-34 and Mn-impregnated SAPO-34 Molecular Sieves Studied by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopy

  • Gernho Back;Kim, Yanghee;Cho, Young-Soo;Lee, Yong-Ill;Lee, Chul-Wee
    • 한국자기공명학회논문지
    • /
    • 제6권1호
    • /
    • pp.20-37
    • /
    • 2002
  • MnAPSO-34 and Mn-impregnated SAPO-34(Mn-SAPO-34) sample were prepared with various manganese contents and studied by electron spin resonance(ESR) and electron spin echo modulation(ESEM). Electron spin echo modulation analysis of 0.07mo1 % Mn(relative to p) in MnAPSO-34 with adsorbed D$_{2}$O shows two deuteriums at 0.26 nm and two at 0.36 nm from Mn. This suggests that two waters hydrate an MnO$_{4}$ configuration with a D-O bond orientation for the waters as expect for a negatively charged site at low manganese content (0.1 mol%), the ESR spectra of MnAPSO-34 and MnH-SAPO-34 exhibit the same parameters(g 2.01 and A 89 G), but the spectra obtained from MnAPSO-34 samples are better resolved. The decomposition temperature of as-synthesized MnAPSO-34 were in the range of 200-600 $^{\circ}C$ of the morpholine which is 12 $^{\circ}C$ higher than that in as-synthesized MnH-SAPO-34. Infrared spectra showed that the position of a band at 3450 $cm^{-1}$ / shifted about 15 $cm^{-1}$ / toward higher energy in MnAPSO-34 versus MnH-SAPO-34. The modulation depth of the two-pulse ESE of MnAPSO-34 with adsorbed D$_{2}$O is deeper than that of MnH-SAPO-34 with adsorbed D$_{2}$O. Three-pulse ESEM of MnAPSO-34 and MnH-SAPO-34 with adsorbed deuterium oxide shows that the local environments of manganese in the hydrated samples are different, suggesting that Mn(II) is framework substituted in MnAPSO-34 since it obviously occupies an extraframework position in MnH-SAPO-34.

  • PDF

V(IV) Species, Location and Adsorbate Interactions in VH-SAPO-42 Studied by ESR and Electron Spin-Echo Modulation Spectroscopies

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Kim, Min-Sik;Lee, Yong-Ill
    • 한국자기공명학회논문지
    • /
    • 제11권2호
    • /
    • pp.95-109
    • /
    • 2007
  • Vanadium-incorporated aluminophosphate microporous molecular sieve VH-SAPO-42 has been studied by electron spin resonance(ESR) and electron spin-echo modulation (ESEM) spectroscopies to determine the vanadium location and interaction with various adsorbate molecules. The results are interpreted in terms of V(IV) ion location and coordination geometry. Assynthesized VH-SAPO-42 contains only vanadyl species with distorted octahedral or trigonal bipyramidal coordination. Vanadium incorporated into H-SAPO-42 occupied extra-framework site. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is identified as a $VO(H_2O)_2^{2+}$ complex coordinated to three framework oxygen atoms bonded to aluminum. When hydrated VH-SAPO-42 is dehydrated at elevated temperature by calcination, species A loses its water ligand and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$ at high temperature, thus suggesting oxidation of $V^{4+}$ to $V^{5+}$. When dehydrated VH-SAPO-42 makes contact with $D_2O$ at room temperature, the ESR signal of species A is regained. The species is assumed as a $VO(O_f)_3(D_2O)_2$ by considering three framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-42 results in another new vanadium species D, which is identified as a $VO(CD_3OH)_2$ complex. When deuterated ethylene is adsorbed on dehydrated VH-SAPO-42, another new vanadium species E identified as a $VO(C_2D_4)^{2+}$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

Comparative Evaluation of Mn Substitution in a Framework Site in MnAPSO-34 and Mn-impregnated SAPO-34 Molecular Sieves Studied by Electron Spin Resonance and Electron Spin-Echo Modulation Spectroscopy

  • Gernho Back;Cho, Young-Soo
    • 한국자기공명학회:학술대회논문집
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.80-80
    • /
    • 2002
  • MnPSO-34 and Mn-impregnated SAPO-34 (Mn-SAPO-34) sample were prepared with various manganese contents and studied by electron spin resonance (ESR) and electron spin-echo modulation (ESEM). Electron spin-echo modulation analysis of 0.07mol % Mn(relative to p) in MnAPSO-34 with adsorbed D$_2$O shows two deuteriums at 0.25 nm and two at 0.36 nm from Mn. This suggests that two waters hydrate an MnO4 configuration with a D-O bond orientation for the waters as expect for a negatively charged site at low manganese content (0.07 mol%), the ESR spectra of MnAPSO-34 and MnH-SAPO-34 exhibit the same parameters (g 2.02 and A 87 G), but the spectra obtained from MnAPSO-34 samples are better resolved. TGA of as-synthesized MnAPSO-34 shows that the decomposition temperature in the range 200-$600^{\circ}C$ of the morpholine is 12$^{\circ}C$ higher than that in as-synthesized MnH-SAPO-34. Infrared spectra shows that the position of a band at about 15 cm-1 toward higher energy in MnAPSO-34 versus MnH-SAPO-34. The modulation depth of the two-pulse ESE of MnAPSO-34 with absorbed D$_2$O is deeper than that of MnH-SAPO-34 with absorbed D$_2$O. Three-pulse ESEM of MnAPSO-34 and MnH-SAPO-34 with absorbed deuterium oxide shows that the local environments of manganese in the hydrated samples are different, suggesting that Mn(II) is framework substituted in MnAPSO-34 since it obviously occupies an extra-framework position in MnH-SAPO-34

  • PDF

The Study on Location and Adsorbate Interaction for Vanadium Species in $VO^{2+}-SAPO-5$ by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies

  • Back Gern-Ho;Park Sung-Gun;Lee Chul-Wee
    • 한국자기공명학회논문지
    • /
    • 제9권2호
    • /
    • pp.138-154
    • /
    • 2005
  • Vanadium-incorporated aluminophosphate molecular sieve $VO^{2+}-SAPO-5$ was studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium structure and interaction with various adsorbate molecules. It was found that the main species at low concentration of vanadium is a monomeric vanadium units in square pyramidal or distorted octahedral coordination, both in oxidation state (IV) for the calcined hydrated material and in oxidation state (V) for the calcined material. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. It is suggested as a $VO(H_2O)_3^{2+}$ complex coordinated to two framework oxygen bonded aluminum. When calcined, hydrated $VO^{2+}-}SAPO-5$ is dehydrated at elevated temperature, a species loses its water ligands and transforms to $VO^{2+}$ ions coordinated to two framework oxygens (species B). Species B reduces its intensity, significantly after treatment with $O_2\;at\;600^{\circ}C$ for 5 h, thus suggesting oxidation of $V^{4+}\;to\;V^{5+}$. When dehydrated $VO^{2+}-SAPO-5$ contacts with $D_2O$ at room temperature, the EPR signal of species A is observed. Thus species assumed as a $VO^{2+}(O_f)_2(D_2O)_3$, by considering two framework oxygens. Adsorption of deuterated ethanol, propanol on dehydrated $VO^{2+}_{-}SAPO-5$ result in another new vanadium species E and F, respectively, which are identified as a $VO^{2+}-(CH_3CH_2OD)_3,\;VO^{2+}-(CH_3CH_2CH_2OD)_2$ complex. When deuterated benzene is adsorbed on dehydrated $VO^{2+}-SAPO-5$, another new vanadium species G, identified as a $VO^{2+}-(C_6D_6)$ is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

Effect of water distribution on shear strength of compacted loess

  • Kang-ze, Yuan;Wan-kui, Ni;Xiang-fei, Lu;Hai-man, Wang
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.519-527
    • /
    • 2022
  • Shear failure in soil is the primary cause of most geotechnical structure failures or instability. Soil water content is a significant factor affecting soil shear strength. In this study, the shear strength of samples with different water contents was tested. The shear strength, cohesion, and internal friction angle decreased with increasing water content. Based on the variation of cohesion and internal friction angle, the water content zone was divided into a high-water content zone and low-water content zone with a threshold water content of 15.05%. Cohesion and internal friction angle have a good linear relationship with water content in both zones. Environmental Scanning Electron Microscopy (ESEM) test presented that the aggregates size of the compacted loess gradually increases with increasing water content. Meanwhile, the clay in the compacted loess forms a matric that envelops around the surface of the aggregates and fills the inter-aggregates pores. A quantitative analysis of bound water and free water under different water contents using a nuclear magnetic resonance (NMR) test was carried out. The threshold water content between bound water and free water was slightly below the plastic limit, which is consistent with the results of shear strength parameters. Combined with the T2 distributions obtained by NMR, one can define a T2 relaxation time of 1.58 ms as the boundary point for bound water distribution without free water. Finally, the effects of bound water and free water on shear strength parameters were analyzed using linear regression analysis.

Self-healing Technique을 적용한 폴리머 복합재의 손상 보수 연구 (Study on Damage Repair of Polymer Composites Using Self-Healing Technique)

  • 윤성호;윤영기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.93-96
    • /
    • 2001
  • Structural polymer composites are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. A recent methodology for the damage repair of polymer composites using the self-healing technique is reported. The polymerization of the healing agent is triggered by contact with an embedded catalyst, being necessary to damage repair of polymer composites. For this purpose, the self-healing concept is introduced and the manufacturing process of microcapsule with the healing agent is briefly described. The polymerization between the healing agent and the catalyst is verified by the use of ESEM and IR spectroscopy. Finally the efficiency of the self-healing technique is investigated by measuring the critical load of TDCB specimen.

  • PDF