• Title/Summary/Keyword: ES cells

Search Result 221, Processing Time 0.027 seconds

Establishment of Embryonic Stem Cells Derived from Rabbit Embryos (토끼수정란으로부터 배아세포의 분리)

  • 강회성;임경순;최화식;신영수;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.3
    • /
    • pp.219-225
    • /
    • 2001
  • To establish rabbit Embryonic Stem (ES) cells, rabbit one-cell embryos were collected and cultured in vitro to blastocysts. Blastocysts were co-cultured with mouse embryonic fibroblasts (MEF), rabbit embryonic fibroblasts (REF) or 570 cells expressing LIF (SNL). Although rabbit ES cells were isolated with low efficiencies, total 8 ES cell lines were kept in vitro with normal colony shape. The MEF was the best feeder for rabbit ES cell isolation in regard to growth rate and undifferentiated morphology. The doubling time of rabbit ES cells in MEF was about 84 hours and the undifferentiated morphology was maintained following passing and freezing processes. These rabbit ES cells were differentiated into embryoid body following the culture in the uncoated dishes, indicating that they were undifferentiated stem cells.

  • PDF

Modification of Efficient Vitrification Method by Using Open Pulled Straw (OPS) and EM Grid as Vehicles in Human Embryonic Stem Cell (인간 배아 줄기세포의 OPS와 Grid를 이용한 유리화 동결법의 효율성 비교)

  • 박규형;최성준;김희선;오선경;문신용;차광렬;정형민
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Human embryonic stem (hES) cell lines have been derived from human blastocysts and are expected to have far-reaching applications in regenerative medicine. The objective of this study is to improve freezing method with less cryo-injuries and best survival rates in hES cells by comparing various vitrification conditions. For the vitrifications, ES cells are exposed to the 4 different cryoprotectants, ethylene glycol (EG), 1,2-propanediol (PROH), EG with dime-thylsulfoxide (DMSO) and EG with PROH. We compared to types of vehicles, such as open pulled straw (OPS) or electron microscopic cooper grids (EM grids). Thawed hES cells were dipped into sequentially holding media with 0.2 M sucrose for 1 min, 0.1 M sucrose for 5 min and holding media for 5 min twice and plated onto a fresh feeder layer. Survival rates of vitrified hES cells were assessed by counting of undifferentiated colonies. It shows high survival rates of hES cells frozen with EG and DMSO (60.8%), or EG and PROH(65.8%) on EM grids better than those of OPS, compared to those frozen with EG alone (2.4%) or PROH alone (0%) alone. The hES cells vitrified with EM grid showed relatively constant colony forming efficiency and survival rates, compared to those of unverified hES cells. The vitrified hES cells retained the normal morphology, alkaline phosphates activity, and the expression of SSEA-3 and 4. Through RT-PCR analysis showed Oct-4 gene expression was down-regulated and embryonic germ layer markers were up-regulated in the vitrified hES cells during spontaneous differentiation. These results show that vitrification method by using EM grid supplemented with EG and PROH in hES cells may be most efficient at present to minimize cyto-toxicity and cellular damage derived by ice crystal formation and furthermore may be employed for clinical application.

High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression of heat shock protein and decrease of pluripotent cell marker expression

  • Park, Jeong-A;Kim, Young-Eun;Ha, Yang-Hwa;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.299-304
    • /
    • 2012
  • The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.

Differentiated Human Embryonic Stem Cells Enhance the In vitro and In vivo Developmental Potential of Mouse Preimplantation Embryos

  • Kim, Eun-Young;Lee, Keum-Sil;Park, Se-Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1152-1158
    • /
    • 2010
  • In differentiating human embryonic stem (d-hES) cells there are a number of types of cells which may secrete various nutrients and helpful materials for pre-implantation embryonic development. This study examined whether the d-hES could function as a feeder cell in vitro to support mouse embryonic development. By RT-PCR analysis, the d-hES cells revealed high expression of three germ-layered differentiation markers while having markedly reduced expression of stem cell markers. Also, in d-hES cells, LIF expression in embryo implantation-related material was confirmed at a similar level to undifferentiated ES cells. When mouse 2PN embryos were cultured in control M16 medium, co-culture control CR1aa medium or co-cultured with d-hES cells, their blastocyst development rate at embryonic day 4 (83.9%) were significantly better in the d-hES cell group than in the CR1aa group (66.0%), while not better than in the M16 group (90.7%)(p<0.05). However, at embryonic days 5 and 6, embryo hatching and hatched-out rates of the dhES cell group (53.6 and 48.2%, respectively) were superior to those of the M16 group (40.7 and 40.7%, respectively). At embryonic day 4, blastocysts of the d-hES cell group were transferred into pseudo-pregnant recipients, and pregnancy rate (75.0%) was very high compared to the other groups (M16, 57.1%; CR1aa, 37.5%). In addition, embryo implantation (55.9%) and live fetus rate (38.2%) of the d-hES cell group were also better than those of the other groups (M16, 36.7 and 18.3%, respectively; CR1aa, 23.2 and 8.7%, respectively). These results demonstrated that d-hES cells can be used as a feeder cell for enhancing in vitro and in vivo developmental potential of mouse pre-implantation embryos.

Improving the Survival and Maintenance of the Undifferentiated State of Cryopreserved Human Embryonic Stem Cells by Extended Incubation with Feeder Cells Overnight before Vitrification (동결에 앞서 시행된 지지세포와의 추가 공배양이 인간 배아줄기세포의 유리화 동결보존 후 생존율과 미분화 유지에 미치는 영향)

  • Cha, Soo-Kyung;Choi, Kyoung-Hee;Shin, Ju-Mi;Park, Kyu-Hyung;Yoon, Tae-Ki;Chung, Hyung-Min;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2008
  • This study was conducted to develop an efficient cryopreservation method of human embryonic stem (ES) cells using vitrification. In an initial experiment, sub-clumps of human ES cells (CHA-hES3 and CHA-hES4) were vitrified using grids after incubation with STO feeder cells for 1 or 16 h (Groups 1-1 and 1-2, respectively). After storage for $2{\sim}4$ months, thawed clumps were re-plated on a fresh feeder layer. The survival rates of warmed CHA-hES3 and CHA-hES4 cells of Group 1-2 were significantly higher than those of the corresponding Group 1-1 cells. In the second experiment, human ES cells were vitrified after incubation with feeder or feeder-conditioned medium (Groups 2-1 to -7). Relative mRNA expression of BM proteins and survival rates were increased following incubation of ES cells with fresh feeder cells for 16 h. In conclusion, increasing of tight adhesion between ES cells by extended incubation with feeder could reduce cryoinjury after vitrifying/warming.

  • PDF

Follow Up Expression Patterns of Alkaline Phosphatase(AP) as a Marker for Establishing Mouse Embryonic Stem (ES) Cells (배아주간세포수립을 위한 Alkaline Phosphatase(AP)의 상이한 발현 양식의 추적)

  • 김진회;차수경;노민경;송상진;구덕본;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • The putative totipotency germ cells has a relative abundance of alkaline phosphatases. Thus, histological staining of AP activity offers a new route to isolate totipotent cells and also provides insights into culture systems of these cells. Furthermore, the AP staining technique is simple and fast, requires only the napthol AS/MS substrate in combination with trapping diazonium salts such as fast red or fast blue. However, our unexpected finding was that AP staining of mouse ES cells were detected in the undifferentiaed epiblast-derived cells as well as several types of differentiating cells. This findings are different from results of Talbot et al. (1993) reported usefulness of the AP staining and implies that histological staining of AP may not by useful to determine undifferentiaed state or totipotency of ES cells. Thus, we have investigated the patterns of AP expression by RT-PCR in order to identify a marker of undifferentiated ES/primordial germ (PG) cells. In RT-PCR analysis, embryonic (E)-AP was detected only in undifferentiated ES cells, but intestinal(I)-AP was not detected in all of the examined ES and PG cells. In addition, nonspecific (NS)-AP wasdetected in undifferentiated PG cell from day 7, 5 to 13 of gestation. Histological activity of AP in ES cells was completely suppressed by addition of L-phenylalanine (Phe), L-homoarginine (Har), and L-phenylalanylglycylglycine (PheGlyGly) as an inhibitor, but RT-PCR showed the same results as in the absence of an inhibitors. Our findings suggested that expression of E-AP and NS-AP may use as a marker to determine the undifferentiated status in ES and PG cells.

  • PDF

Human Embryonic Stem Cells Experience a Typical Apoptotic Process upon Oxidative Stress

  • Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.97-97
    • /
    • 2003
  • Embryonic stem (ES) cells, derived from preimplantation embryos, are able to differentiate into various types of cells consisting the whole body, or pluripotency. In addition to the plasticity, ES cells are expected to be different from terminally differentiated cells in very many ways, such as patterns of gene expressions, ability and response of the cells in confronting environmental stimulations, metabolism, and growth rate. As a model system to differentiate these two types of cells, human ES (hES, MB03) cells and terminally differentiated cells (HeLa), we examined the ability of these two types of cells in confronting a severe oxidative insult, that is $H_2 O_2$. Ratio of dying cells as determined by the relative amount of dye neutral red entrapped within the cells after the exposures. Cell death rates were not significantly different when either MB03 or HeLa were exposed up to 0.4 mM $H_2 O_2$. However, relative amount of dye entrapped within the cells sharply decreased down to 0.12% in HeLa cells when the cells were exposed to 0.8 mM $H_2 O_2$, while it was approximately 54% in MB03. Pretreatment of cells with BSO (GSH chelator) and measurement of GSH content results suggest that cellular GSH is the major defensive mechanism of hES cells. Induction of apoptosis in hES cell was confirmed by DNA laddering, induction of Bax, and chromatin condensation. In summary, hES cells 1) are extremely resistant to oxidative stress, 2) utilize GSH as a major defensive mechanism. and 3) experience apoptosis upon exposure to oxidative stress.

  • PDF

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

Expression of the C1orf31 Gene in Human Embryonic Stem Cells and Cancer Cells

  • Ahn, Jin-Seop;Moon, Sung-Hwan;Yoo, Jung-Ki;Jung, Hyun-Min;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.223-227
    • /
    • 2008
  • Human embryonic stem (ES) cells retain the capacity for self-renewal, are pluripotent and differentiate into the three embryonic germ layer cells. The regulatory transcription factors Oct4, Nanog and Sox2 play an important role in maintaining the pluripotency of human ES cells. The aim of this research was to identify unknown genes upregulated in human ES cells along with Oct4, Nanog, and Sox2. This study characterizes an unknown gene, named chromosome 1 open reading frame 31 (C1orf31) mapping to chromosome 1q42.2. The product of C1orf31 is the hypothetical protein LOC388753 having a cytochrome c oxidase subunit VIb (COX6b) motif. In order to compare expression levels of C1orf31 in human ES cells, human embryoid body cells, vascular angiogenic progenitor cells (VAPCs), cord-blood endothelial progenitor cells (CB-EPCs) and somatic cell lines, we performed RT-PCR analysis. Interestingly, C1orf31 was highly expressed in human ES cells, cancer cell lines and SV40-immortalized cells. It has a similar expression pattern to the Oct4 gene in human ES cells and cancer cells. Also, the expression level of C1orf31 was shown to be upregulated in the S phase and early G2 phase of synchronized HeLa cells, leading us to purpose that it may be involved in the S/G2 transition process. For these reasons, we assume that C1orf31 may play a role in on differentiation of human ES cells and carcinogenesis.

Feeder Independent Culture of Mouse Embryonic Stem Cells

  • Kim, Myoung Ok;Ryoo, Zae Young
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.291-294
    • /
    • 2012
  • Embryonic stem cell classically cultured on feeder layer with FBS contained ES medium. Feeder-free mouse ES cell culture systems are essential to avoid the possible contamination of nonES cells. First we determined the difference between ES cell and MEF by Oct4 population. We demonstrate to culture and to induce differentiation on feeder free condition using a commercially available mouse ES cell lines.