This work introduces a novel unweighted combination method (UCSS) for business failure perdition (BFP). With considering features of BFP in the age of big data, UCSS integrates the quantitative and qualitative analysis by utilizing soft set theory (SS). We adopt the conventional expert system (ES) as the basic qualitative classifier, the logistic regression model (LR) and the support vector machine (SVM) as basic quantitative classifiers. Unlike other traditional combination methods, we employ soft set theory to integrate the results of each basic classifier without weighting. In this way, UCSS inherits the advantages of ES, LR, SVM, and SS. To verify the performance of UCSS, it is applied to real datasets. We adopt ES, LR, SVM, combination models utilizing the equal weight approach (CMEW), neural network algorithm (CMNN), rough set and D-S evidence theory (CMRD), and the receiver operating characteristic curve (ROC) and SS (CFBSS) as benchmarks. The superior performance of UCSS has been verified by the empirical experiments.
This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.
Journal of Korean Institute of Industrial Engineers
/
v.17
no.1
/
pp.75-82
/
1991
This research is concerned with Machine-Part Group Formation(MPGF) methodology for Flexible Manufacturing Systems(FMS). The purpose of the research is to develop a new heuristic algorithm for effectively solving MPGF problem. The new algorithm is proposed and evaluated by 100 machine-part incidence matrices generated. The performance measures are (1) grouping ability of mutually exclusive block-diagonal form. (2) number of unit group and exceptional elements, and (3) grouping time. The new heuristic algorithm has the following characteristics to effectively conduct MPGF : (a) The mathematical model is presented for rapid forming the proper number of unit groups and grouping mutually exclusive block-diagonal form, (b) The simple and effective mathematical analysis method of Rank Order Clustering(ROC) algorithm is applied to minimize intra-group journeys in each group and exceptional elements in the whole group. The results are compared with those from Expert System(ES) algorithm and ROC algorithm. The results show that the new algorithm always gives the group of mutually exclusive block-diagonal form and better results(85%) than ES algorithm and ROC algorithm.
The attackers on Internet-connected systems we are seeing today are more serious and technically complex than those in the past. So it is beyond the scope of amy one system to deal with the intrusions. That the multiple IDSes (Intrusion Detection System) coordinate by sharing attacker's information for the effective detection of the intrusion is the effective method for improving the intrusion detection performance. The system which uses BBA (BlackBoard Architecture) for the information sharing can be easily expanded by adding new agents and increasing the number of BB (BlackBoard) levels. Moreover the subdivided levels of blackboard enhance the sensitivity of the intrusion detection. For the simulation, security models are constructed based on the DEVS (Discrete EVent system Specification) formalism. The intrusion detection agent uses the ES (Expert System). The intrusion detection system detects the intrusions using the blackboard and the firewall responses these detection information.
Journal of Institute of Control, Robotics and Systems
/
v.9
no.4
/
pp.310-319
/
2003
As the importance and the need for network security are increased, many organizations use the various security systems. They enable to construct the consistent integrated security environment by sharing the network vulnerable information among IDS (Intrusion Detection System), firewall and vulnerable scanner. The multiple IDSes coordinate by sharing attacker's information for the effective detection of the intrusion is the effective method for improving the intrusion detection performance. The system which uses BBA (Blackboard Architecture) for the information sharing can be easily expanded by adding new agents and increasing the number of BB (Blackboard) levels. Moreover the subdivided levels of blackboard enhance the sensitivity of the intrusion detection. For the simulation, security models are constructed based on the DEVS (Discrete Event system Specification) formalism. The intrusion detection agent uses the ES (Expert System). The intrusion detection system detects the intrusions using the blackboard and the firewall responses to these detection information.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
1998.10a
/
pp.153-158
/
1998
In this paper, we present a design of optimal 2-DOF PID controller for control of gantry crane which has to control swing motion and trolley position. For tuning the parameter of 2-DOF PID controller, we used evolution strategy(ES). During operate the crane system in yard, the goal is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. However, we developed an optimal controller which has to control the crane system with disturbance.
During the operation of crane system in container yard, the objective is to transport the load to a goal position as quick as possible without rope oscillation. The container crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. Therefore, we developed an optimal controller which has to control the crane system with disturbances. In this paper, we present a design of optima 2-DOF PID controller for the control of gantry crane which has to control swing motion and trolley position. We used evolution strategy(ES) to tune the parameters of 2-DOF PID controller. It was compared with general PID controller. The computer simulations show that the proposed method has better performances than the other method.
This paper presents the application of the wavelet transform analysis and the neural network method to the phonocardiogram (PCG) signal. Heart sound is a acoustic signal generated by cardiac valves, myocardium and blood flow and is a very complex and nonstationary signal composed of many source. Heart sound can be discriminated normal heart sound and heart murmur. Murmurs have broader frequency bandwidth than the normal ones and can occur at random position of cardiac cycle. In this paper, we classified the group of heart sound as normal heart sound(NO), pre-systolic murmur(PS), early systolic murmur(ES), late systolic murmur(LS), early diastolic murmur(ED). And we used the wavelet transform to shorten artifacts and strengthen the low level signal. The ANN system was trained and tested with the back- propagation algorithm from a large data set of examples-normal and abnormal signals classified by expert. The best ANN configuration occurred with 15 hidden layer neurons. We can get the accuracy of 85.6% by using the proposed algorithm.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.08a
/
pp.149-150
/
2008
Generally, the propeller shaft rate (PSR) estimation algorithm for the classification of the sonar target has the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family from the frequency spectrum, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.632-637
/
2008
In real system application, the propeller shaft rate (PSR) estimation algorithm for the feature extraction of the sonar target operates with the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family composed of the fundamental and its harmonics from the multiple spectral lines in the frequency spectrum-based sonar target classification, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. To verify the performance of the proposed algorithm, a sonar target PSR estimation is performed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.