• Title/Summary/Keyword: ERK1/2 protein

Search Result 588, Processing Time 0.025 seconds

Effect of Bee Venom Pharmacopuncture on Inflammation in Mouse Model of Induced Atopic Dermatitis

  • Park, Kyeong Ju;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.37 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • Background: This study was designed using a mouse model of atopic dermatitis [phthalic anhydride (PA)-treated mice], to investigate the anti-inflammatory effect of bee venom pharmacopuncture (BVP) in keratinocytes. Methods: Western blot analysis was performed to investigate inflammation related protein expression of iNOS, COX-2, phospho-ERK (p-ERK), and ERK, in LPS (1 ㎍/mL)-activated keratinocytes, following BVP treatment, and in PA-treated mice, after BVP treatment. Griess reaction was performed to investigate NO concentration. Enzyme-linked immunosorbent assays were used to determine the concentrations of interleukin (IL)-4+, IL-17A+, IL-13 and IL-4 in PA-treated mice after BVP treatment. In addition, monocyte, macrophage, neutrophil, and eosinophil counts were measured to observe the changes in white blood cell infiltration. Results: The keratinocytes of the BVP-treated group showed a decreased expression of iNOS, COX-2, ERK at 5 OX-2, ERK E, and p-ERK at 1, 2 and 5 RKRK ERK ERK, and a dose-dependent decrease in NO concentration at 2 and 5 ntrationof s. In the BVP-treated groups (0.1 μ.1-trea μ.1-treated gr), PA-treated mice showed recovery after 4 weeks which was dose-dependent, showing a significant decrease in clinical scores for AD, and a decreased concentration of IL-13 and IL-4 with BV treatment. There was a dose-dependent decrease in the infiltration of eosinophils, neutrophils, monocytes, macrophages, and a decreased thickness of the epidermis due to inflammation, and decreased expressions of iNOS, COX-2, p-ERK, ERK, especially in the 0.1 μ0/mL BVP-treated group, Conclusion: These results suggest that BVP may be an effective alternative treatment for atopic dermatitis.

Human amnion-derived mesenchymal stem cells induced osteogenesis and angiogenesis in human adipose-derived stem cells via ERK1/2 MAPK signaling pathway

  • Wang, Yuli;Chen, Xichen;Yin, Ying;Li, Song
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.194-199
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) have shown great potential in treating bone deficiency. Human adipose-derived stem cells (HASCs) are multipotent progenitor cells with multi-lineage differentiation potential. Human amnion-derived mesenchymal stem cells (HAMSCs) are capable of promoting osteogenic differentiation of MSCs. In this study, we investigated the effect of HAMSCs on HASCs by a transwell co-culture system. HAMSCs promoted proliferation, osteogenic differentiation, angiogenic potential and adiponectin (APN) secretion of HASCs. Moreover, the positive effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway. These observations suggested that HAMSCs induced bone regeneration in HASCs via ERK1/2 MAPK signaling pathway.

Involvement of ERK1/2 and JNK Pathways in 17${\beta}-estradiol$ Induced Kir6.2 and SK2 Upregulation in Rat Osteoblast-like Cells

  • Kim, Jung-Wook;Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.199-205
    • /
    • 2006
  • The functional expression of potassium $(K^+)$ channels has electrophysiologically been studied in bone cells from several species, however, their identity and regulation of gene expressions in bone cells are not well known. In the present study, to investigate how $K^+$ channel expressions are regulated by estrogen, we measured changes of transcript levels of various $Ca^{2+}$-activated ($K_{Ca}$) and ATP-sensitive $K^+$ channels in rat osteoblastic ROS 17/2.8 cells after treatment with estrogen. Application of 17${\beta}$-estradiol $(E_2)$ for 24 h and 48 h increased mRNA and protein expressions of inwardly rectifying $K^+$ channel (Kir) 6.2 and type 2 small conductance $K_{Ca}$ channel (SK2), respectively. Combined treatment of cells with 17${\beta}-E_2$ and ICI 182,780, a pure antiestrogen, suppressed 17${\beta}-E_2$-induced alterations of SK2 and Kir6.2 mRNA levels. In addition, treatment of cells with U0126, a specific inhibitor of extracellular receptor kinases (ERK)1/2, and SP600125, a specific inhibitor of c-jun N-terminal kinase (JNK) blocked the enhancing effects of 17${\beta}-E_2$ on SK2 and Kir6.2 protein expressions. On the other hand, blocking of p38 mitogen-activated protein kinase had no effect. Taken together, these results indicate that 17${\beta}-E_2$ modulates SK2 and Kir6.2 expressions through the estrogen receptor, involving ERK1/2 and JNK activations.

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

Inhibitory Effect of the Ethanol Extract of Rosae rugosae Flos on the Hyperpigmentation and its Action Mechanism Induced by α-MSH (매괴화(玫瑰花) 에탄올추출물이 α-MSH로 유도된 과색소 형성 억제와 작용기전 연구)

  • Lee, Jin-Ho;In, Myung-Hee;Kang, Suk-Hoon;Mun, Yeun-Ja;Woo, Won-Hong;Lim, Kyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.1
    • /
    • pp.41-52
    • /
    • 2015
  • Objective : This study investigated the inhibitory mechanism of the hypopigmentating effects on ethanol extract of Rosae rugosae Flos (ERR) that has not yet been examined. Methods : We analyzed the anti-melanogenic effects of ethanol extracts from Rosae rugosae Flos by tyrosinase activity, melanin contents. We also examined protein expression levels of tyrosinase, TRP-1, TRP-2, MITF and ERK by western blot analysis in melanoma cells. Results : In this investigation, ERR effectively reduced ${\alpha}$-MSH-stimulated melanin synthesis by suppressing expression of tyrosinase and tyrosinase-related protein-1 (TRP-1). On the other hand, the expression of tyrosinase-related protein-2 (TRP-2) were not affected by treatment with ERR. ERR inhibited the expression of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis. The upstream signaling pathway including cAMP response element-binding protein (CREB) and MAPKs were also inhibited by ERR. Pretreatment with PD98059, ERK inhibitor, attenuated the inhibitory effect of ERR on ${\alpha}$-MSH-induced tyrosinase activity. Conclusions : Our study suggested that the anti-melanogenic activity of ERR is correlated with the suppression of tyrosinase gene through CREB/MITF/ERK pathway.

Sustained Intracellular Acidosis Triggers the Na+/H+ Exchager-1 Activation in Glutamate Excitotoxicity

  • Lee, Bo Kyung;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.593-598
    • /
    • 2017
  • The $Na^+/H^+$ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular $H^+$ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-${\beta}$ (PKC-${\beta}$) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to $100{\mu}M$ glutamate or 20 mM $NH_4Cl$. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-${\beta}$, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to $NH_4Cl$. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-${\beta}$, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-${\beta}$/ERK1/2/p90RSK pathway in neuronal cells.

Triptolide Inhibits the Proliferation of Immortalized HT22 Hippocampal Cells Via Persistent Activation of Extracellular Signal-Regulated Kinase-1/2 by Down-Regulating Mitogen-Activated Protein Kinase Phosphatase-1 Expression

  • Koo, Hee-Sang;Kang, Sung-Don;Lee, Ju-Hwan;Kim, Nam-Ho;Chung, Hun-Taeg;Pae, Hyun-Ock
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2009
  • Objective : Triptolide (TP) has been reported to suppress the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), of which main function is to inactivate the extracellular signal-regulated kinase-1/2 (ERK-1/2), the p38 MAPK and the c-Jun N-terminal kinase-1/2 (JNK-1/2), and to exert antiproliferative and pro-apoptotic activities. However, the mechanisms underlying antiproliferative and pro-apoptotic activities of TP are not fully understood. The purpose of this study was to examine whether the down-regulation of MKP-1 expression by TP would account for antiproliferative activity of TP in immortalized HT22 hippocampal cells. Methods : MKP-1 expression and MAPK phosphorylation were analyzed by Western blot. Cell proliferation was assessed by $^3H$-thymidine incorporation. Small interfering RNA (siRNA) against MKP-1, vanadate (a phosphatase inhibitor), U0126 (a specific inhibitor for ERK-1/2), SB203580 (a specific inhibitor for p38 MAPK), and SP600125 (a specific inhibitor for JNK-1/2) were employed to evaluate a possible mechanism of antiproliferative action of TP. Results : At its non-cytotoxic dose, TP suppressed MKP-1 expression, reduced cell growth, and induced persistent ERK-1/2 activation. Similar growth inhibition and ERK-1/2 activation were observed when MKP-1 expression was blocked by MKP-1 siRNA and its activity was inhibited by vanadate. The antiproliferative effects of TP, MKP-1 siRNA, and vanadate were significantly abolished by U0126, but not by SB203580 or SP600125. Conclusion : Our findings suggest that TP inhibits the growth of immortalized HT22 hippocampal cells via persistent ERK-1/2 activation by suppressing MKP-1 expression. Additionally, this study provides evidence supporting that MKP-1 may play an important role in regulation of neuronal cell growth.

Artemisia capillaris Thunb. inhibits cell growth and induces apoptosis in human hepatic stellate cell line LX2

  • Kim, Young-Il;Lee, Jang-Hoon;Park, Seung-Won;Choi, In-Hwa;Friedman, Scott L.;Woo, Hong-Jung;Kim, Young-Chul
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.254-262
    • /
    • 2010
  • Artemisia capillaris (A. capillaries) is known to play roles in many cellular events, such as cell proliferation, differentiation, and apoptosis. We investigated the antifibrogenic efficacy of A. capillaris in the immortalized human hepatic stellate cell line LX2. Cell proliferation was determined by the MTT assay. Cell cycle was analyzed by the flow cytometry. Apoptotic cells were measured using a cell death detection ELISA. Caspase activity was detected by a colorimetric assay. The mRNA level of Bcl-2 and Bax mRNA were measured by real-time PCR. MEK and ERK protein were detected by Western blot analysis. We provide evidence that A. capillaris induces cell cycle arrest, apoptosis, and potently inhibits the mitogen-activated protein kinase pathway. A. capillaris inhibited cell proliferation of LX2 cells in a dose- and time-dependent manner, increased the apoptosis fraction at cell cycle analysis with an accompanying DNA fragmentation, and resulted in a significant decrease in Bcl-2 mRNA levels and an increase in Bax expression. Exposure of LX2 cells to A. capillaris induced caspase-3 activation, but co-treatment of A. capillaris with the pan-caspase inhibitor Z-VAD-FMK, and the caspase-3 inhibitor Z-DEVE-FMK, blocked apoptosis. A. capillaris down-regulated Mcl-1 protein levels and inhibited phosphorylation of MEK/ERK, suggesting that it mediates cell death in LX2 cells through the down-regulation of Mcl-1 protein via a MEK/ERK-independent pathway.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Cyclooxygenase-2 Induction in Porphyromonas gingivalis-Infected THP-1 Monocytic Cells

  • Choi, Eun-Kyoung;Oh, Byung-Ho;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized $PGE_2$ has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of $PGE_2$ were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and $NF-{\kappa}B$.