• Title/Summary/Keyword: ERK activation

Search Result 681, Processing Time 0.025 seconds

Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells

  • Joo, Donghyun;Woo, Jong Soo;Cho, Kwang-Hyun;Han, Seung Hyun;Min, Tae Sun;Yang, Deok-Chun;Yun, Cheol-Heui
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.220-225
    • /
    • 2016
  • Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling.

RGS Protein Specificity Towards Gq- and Gi/o-Mediated ERK 1/2 and Akt Activation, in vitro

  • Anger, Thomas;Klintworth, Nils;Stumpf, Christian;Daniel, Werner G.;Mende, Ulrike;Garlichs, Christoph D.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.899-910
    • /
    • 2007
  • Extracellular Regulated Kinases (ERK) and Protein Kinase B (Akt) are intermediaries in relaying extracellular growth signals to intracellular targets. Each pathway can become activated upon stimulation of G protein-coupled receptors mediated by $G_q$ and $G_{i/o}$ proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity in which cardiac RGS proteins modulate $G_{q^-}$ and $G_{i/o}$-induced ERK and Akt phosphorylation. To isolate $G_{q^-}$ and $G_{i/o}$-mediated effects, we exclusively expressed muscarinic $M_2$ or $M_3$ receptors in COS-7 cells. Western blot analyses demonstrated increase of phosphorylation of ERK 1.7-/3.3-fold and Akt 2.4-/6-fold in $M_{2^-}/M_{3^-}$ expressing cells through carbachol stimulation. In co-expressions, $M_3/G_q$-induced activation of Akt was exclusively blunted through RGS3s/RGS3, whereas activation of ERK was inhibited additionally through RGS2/RGS5. $M_2/G_{i/o}$ induced Akt activation was inhibited by all RGS proteins tested. RGS2 had no effect on $M_2/G_{i/o}$-induced ERK activation. The high degree of specificity in RGS proteins-depending modulation of $G_{q^-}$ and $G_{i/o}$-mediated ERK and Akt activation in the muscarinic network cannot merely be attributed exclusively to RGS protein selectivity towards $G_q$ or $G_{i/o}$ proteins. Counter-regulatory mechanisms and inter-signaling cross-talk may alter the sensitivity of GPCR-induced ERK and Akt activation to RGS protein regulation.

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Ceramide Induces Cell Death through an ERK-dependent Mitochondrial Apoptotic Pathway in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.46-54
    • /
    • 2010
  • Ceramide induces cell death in a variety of cell types however, the underlying molecular mechanisms related to renal epithelial cells remain unclear. The present study was undertaken to determine the role of extracellular signal-regulated protein kinase (ERK) in ceramide-induced cell death in renal epithelial cells. An established renal proximal tubular cell line of opossum kidney (OK) cells was used for this research. Ceramide induced apoptotic cell death in these cells. Western blot analysis showed that ceramide induced activation of ERK. The ERK activation and cell death induced by ceramide were prevented by the ERK inhibitor PD98059. Ceramide caused cytochrome C release from mitochondria into the cytosol as well as activation of caspase-3. Both effects were prevented by PD98059. The ceramide-induced cell death was also prevented by a caspase inhibitor. These results suggest that ceramide induces cell death through an ERK-dependent mitochondrial apoptotic pathway in OK cells.

  • PDF

Effect of Electroacupuncture on ERK Activation in Carrageenan-induced Inflammatory Pain Model

  • Kim, Ji-Hwan;Lee, Si-Hyoung;Kim, Ha-Neui;Kim, Yu-Ri;Lee, Yong-Tae;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.872-876
    • /
    • 2010
  • The present study found that EA pre-treatment effectively attenuated both spinal ERK activation and hyperalgesia against carrageenan-induced inflammation, whereas EA co-treatment with carrageenan injection unexpectedly elevated ERK activation in a synergistic manner and virtually had no analgesic effect. Therefore, we have concluded that the molecular mechanism of EA anagesia may be related to the inhibition of spinal ERK activation. Further experiments are required to find the intermediate candidates which transmits the pain-alleviating signals on the way of inhibiting ERK activation by EA.

Angiogenic Effects of Korea Red Ginseng Water Extract in the In Vitro and In Vivo Models (홍삼수용성추출물이 혈관신생에 미치는 영향)

  • Rho, Euy-Joon;Ryu, Seong-Hun;Kim, Gyu-Min;Lee, Sang-Hyun;Yun, Young-Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.416-425
    • /
    • 2009
  • Angiogenesis is important for promoting cardiovascular disease, wound healing, and tissue regeneration. We here investigated the pharmacological effects of Korea red ginseng water extract (KRGE) on angiogenesis and its underlying signal mechanism. This study showed that KRGE increased in vitro proliferation, migration, and tube formation of human umbilical endothelial cells, as well as stimulated in vivo angiogenesis. KRGE-induced angiogenesis was accompanied by phosphorylation of ERK1/2, Akt, and endothelial nitric oxide synthase (eNOS) as well as an increase in NO production. Inhibition of PI3K activity by wortmannin completely inhibited KRGE-induced angiogenesis and phosphorylation of Akt, ERK1/2, and eNOS, indicating that PI3K/Akt activation is an upstream event of KRGE-mediated angiogenic pathway. The MEK inhibitor PD98059 completely blocked KRGE-induced angiogenesis and ERK phosphorylation without affecting Akt and eNOS activation. However, the eNOS inhibitor NMA effectively inhibited tube formation, but partially blocked proliferation and migration as well as ERK phosphorylation without altering Akt and eNOS activation, revealing that eNOS/NO pathway is in part involved in ERK1/2 activation. This study first demonstrated the critical involvement of both ERK1/2 and eNOS activation in KRGE-induced angiogenesis, which lie on downstream of PI3K/Akt. Thus, these results indicate that KRGE requires activation of both the PI3K/Akt-dependent ERK1/2 and eNOS signal pathways and their cross-talk for its full angiogenic activity.

Regulation of ERK1/2 by the C. elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells

  • Kim, Seungwoo;Shin, Youngmi;Shin, Youngju;Park, Yang-Seo;Cho, Nam Jeong
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.504-509
    • /
    • 2008
  • Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Paraquat Induces Apoptosis through Cytochrome C Release and ERK Activation

  • Seo, Hong Joo;Choi, Sang Joon;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • Paraquat has been suggested to induce apoptosis by generation of reactive oxygen species (ROS). However, little is known about the mechanism of paraquat-induced apoptosis. Here, we demonstrate that extracellular signal-regulated protein kinase (ERK) is required for paraquat-induced apoptosis in NIH3T3 cells. Paraquat treatment resulted in activation of ERK, and U0126, inhibitors of the MEK/ERK signaling pathway, prevented apoptosis. Moreover, paraquat-induced apoptosis was associated with cytochrome C release, which could be prevented by treatment with the MEK inhibitors. Taken together, our findings suggest that ERK activation plays an active role in mediating paraquat-induced apoptosis of NIH3T3 cells.