Browse > Article

Regulation of ERK1/2 by the C. elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells  

Kim, Seungwoo (School of Life Sciences, Chungbuk National University)
Shin, Youngmi (School of Life Sciences, Chungbuk National University)
Shin, Youngju (School of Life Sciences, Chungbuk National University)
Park, Yang-Seo (School of Life Sciences, Chungbuk National University)
Cho, Nam Jeong (School of Life Sciences, Chungbuk National University)
Abstract
Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.
Keywords
C. elegans; ERK1/2; GAR-3; Muscarinic Acetylcholine Receptor;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bonner, T.I., Young, A.C., Brann, M.R., and Buckley, N.J. (1988). Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403-410   DOI   ScienceOn
2 Crespo, P., Xu, N., Simonds, W.F., and Gutkind, J.S. (1994). Ras-dependent activation of MAP kinase pathway mediated by G-protein ${\beta}\;{\gamma}$ subunits. Nature 369, 418-420   DOI   ScienceOn
3 Houslay, M.D., and Kolch, W. (2000). Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol. Pharmacol. 58, 659-668   DOI
4 Jimenez, E., Gamez, M.I., Bragado, M.J., and Montiel, M. (2002). Muscarinic activation of mitogen-activated protein kinase in rat thyroid epithelial cells. Cell. Signal. 14, 665-672   DOI   ScienceOn
5 Lee, Y.-S., Park, Y.-S., Nam, S., Suh, S.J., Lee, J., Kaang, B.-K., and Cho, N.J. (2000). Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 75, 1800-1809   DOI   ScienceOn
6 Min, D.S., Cho, N.J., Yoon, S.H., Lee, Y.H., Hahn, S.-J., Lee, K.-H., Kim, M.-S., and Jo, Y.-H. (2000). Phospholipase C, protein kinase C, $Ca^{2+}$/calmodulin-dependent protein kinase II, and tyrosine phosphorylation are involved in carbachol-induced phospholipase D activation in Chinese hamster ovary cells expressing muscarinic acetylcholine receptor of Caenorhabditis elegans. J. Neurochem. 75, 274-281   DOI
7 Stork, P.J.S., and Schmitt, J.M. (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258-266   DOI   ScienceOn
8 Park, Y.-S., Kim, S., Shin, Y., Choi, B., and Cho, N.J. (2003). Alternative splicing of the muscarinic acetylcholine receptor GAR-3 in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 308, 961-965   DOI   ScienceOn
9 Park, Y.-S., Cho, T.-J., and Cho, N.J. (2006). Stimulation of cyclic AMP production by the Caenorhabditis elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Arch. Biochem. Biophys. 450, 203-207   DOI   ScienceOn
10 Lee, Y.-S., Park, Y.-S., Chang, D.-J., Hwang, J.M., Min, C.K., Kaang, B.-K., and Cho, N.J. (1999). Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans. J. Neurochem. 72, 58-65   DOI   ScienceOn
11 Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185   DOI   ScienceOn
12 Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J., and Capon, D.J. (1988). Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434-437   DOI   ScienceOn
13 Liu, Y., LeBoeuf, B., and Garcia, L.R. (2007). G${\alpha}$q-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J. Neurosci. 27, 1411-1421   DOI   ScienceOn
14 You, Y. J., Kim, J., Cobb, M., and Avery, L. (2006). Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab. 3, 237-245   DOI   ScienceOn
15 Wotta, D.R., Wattenberg, E.V., Langason, R.B., and El-Fakahany, E.E. (1998). M1, M3 and M5 muscarinic receptors stimulate mitogen-activated protein kinase. Pharmacology 56, 175-186   DOI   ScienceOn
16 Wylie, P.G., Challiss, R.A.J., and Blank, J.L. (1999). Regulation of extracellular-signal regulated kinase and c-Jun N-terminal kinase by G-protein-linked muscarinic acetylcholine receptors. Biochem. J. 338, 619-628   DOI
17 Hwang, J.M., Chang, D.-J., Kim, U.S., Lee, Y.-S., Park, Y.-S., Kaang, B.-K., and Cho, N.J. (1999). Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptors Channels 6, 415-424
18 Steger, K.A., and Avery, L. (2004). The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167, 633-643   DOI   ScienceOn
19 Nathanson, N.M. (1987). Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci. 10, 195-236   DOI   ScienceOn
20 Bonner, T.I., Buckley, N.J., Young, A.C., and Brann, M.R. (1987). Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527-532   DOI
21 Pearson, G., Robinson, F., Gibson, T.B., Xu, B.-E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183   DOI   ScienceOn
22 Slack, B.E. (2000). The m3 muscarinic acetylcholine receptor is coupled to mitogen-activated protein kinase via protein kinase C and epidermal growth factor receptor kinase. Biochem. J. 348, 381-387   DOI
23 Gutkind, J.S. (1998). The pathways connecting G proteincoupled receptors to the nucleus through divergent mitogenactivated protein kinase cascades. J. Biol. Chem. 273, 1839-1842   DOI   ScienceOn