• Title/Summary/Keyword: EPCs

Search Result 27, Processing Time 0.027 seconds

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose

  • Zeng, Yao-Chi;Mu, Gui-Ping;Huang, Shu-Fen;Zeng, Xue-Hui;Cheng, Hong;Li, Zhong-Xin
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.368-376
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs. MATERIALS/METHODS: Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and $50{\mu}g/mL$ of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK. RESULTS: The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and $50{\mu}g/mL$ of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury. CONCLUSIONS: Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.

Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

  • Im, Woo-Seok;Chung, Jin-Young;Bhan, Jae-Jun;Lim, Ji-Yeon;Lee, Soon-Tae;Chu, Kon;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside $Rg_3$ prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by ${\beta}$-galactosidase (${\beta}$-gal) staining. Staining with 4'-6-Diamidino-2-phenylindole verified that most adherent cells (93${\pm}$2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of ${\beta}$-gal-positive EPCs was decreased from 93.8${\pm}$2.0% to 62.5${\pm}$3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms.

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

  • Widowati, Wahyu;Wijaya, Laura;Laksmitawati, Dian Ratih;Widyanto, Rahma Micho;Erawijantari, Pande Putu;Fauziah, Nurul;Bachtiar, Indra;Sandra, Ferry
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2016
  • Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, $12.5{\mu}mol/L$ was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements

  • Lim, Jiwon;Guk, Jae-Geun;Singh, Bhupendra;Hwang, Yun-Chan;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.403-411
    • /
    • 2019
  • In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.

Low-dose metronomic doxorubicin inhibits mobilization and differentiation of endothelial progenitor cells through REDD1-mediated VEGFR-2 downregulation

  • Park, Minsik;Kim, Ji Yoon;Kim, Joohwan;Lee, Jeong-Hyung;Kwon, Young-Guen;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.470-475
    • /
    • 2021
  • Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression.

Exocrine pancreatic cancer as a second primary malignancy: A population-based study

  • Mee Joo Kang;Jiwon Lim;Sung-Sik Han;Hyeong Min Park;Sung Chun Cho;Sang-Jae Park;Sun-Whe Kim;Young-Joo Won
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.4
    • /
    • pp.415-422
    • /
    • 2023
  • Backgrounds/Aims: Although cancer survivors are at higher risk of developing second primary malignancies, cancer surveillance strategies for them have not yet been established. This study aimed to identify first primary cancers that had high risks of developing second primary exocrine pancreatic cancer (EPC). Methods: Data on individuals diagnosed with primary cancers between 1993 and 2017 were obtained from the Korea Central Cancer Registry. The standardized incidence ratios (SIRs) of second primary EPCs were analyzed according to the primary tumor sites and follow-up periods. Results: Among the 3,205,840 eligible individuals, 4,836 (0.15%) had second primary EPCs, which accounted for 5.8% of the total EPC patients in Korea. Between 1 and 5 years after the diagnosis of first primary cancers, SIRs of second primary EPCs were increased in patients whose first primary cancers were in the bile duct (males 2.99; females 5.03) in both sexes, and in the small intestine (3.43), gallbladder (3.21), and breast (1.26) in females. Among those who survived 5 or more years after the diagnosis of first primary cancers, SIRs of second primary EPCs were elevated in patients whose first primary cancers were in the bile duct (males 2.61; females 2.33), gallbladder (males 2.29; females 2.22), and kidney (males 1.39; females 1.73) in both sexes, and ovary (1.66) and breast (1.38) in females. Conclusions: Survivors of first primary bile duct, gallbladder, kidney, ovary, and female breast cancer should be closely monitored for the occurrence of second primary EPCs, even after 5 years of follow-up.

Development of A Computerized Risk Management System for International EPCS Projects

  • Yoo, Wi Sung;Kim, Woo-young;Sung, Yookyung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.614-615
    • /
    • 2015
  • In these days, global construction market is speedily increasing and domestic construction companies have a chance of new contracts. In the meantime, international projects have been increasingly forced to cope with potential risks, which seriously impacted achieving the targeted time and cost. In this study, we introduce a computerized risk management system for international EPCS projects, which is constructed on the needs of practitioners and decision makers as an aid to proactively control the potential risks and to monitor continuously their status and variation. The system is called the Project Risk Management System (PRiMS) is useful for furnishing project managers with warning signals as a project is progressing and helpful for producing the total risk score and tracking risk variation.

  • PDF

Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice

  • Jin, Haiming;Zhang, Zengjie;Wang, Chengui;Tang, Qian;Wang, Jianle;Bai, Xueqin;Wang, Qingqing;Nisar, Majid;Tian, Naifeng;Wang, Quan;Mao, Cong;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.13.1-13.15
    • /
    • 2018
  • Wound healing is delayed in diabetic patients. Increased apoptosis and endothelial progenitor cell (EPC) dysfunction are implicated in delayed diabetic wound healing. Melatonin, a major secretory product of the pineal gland, promotes diabetic wound healing; however, its mechanism of action remains unclear. Here, EPCs were isolated from the bone marrow of mice. Treatment of EPCs with melatonin alleviated advanced glycation end product (AGE)-induced apoptosis and cellular dysfunction. We further examined autophagy flux after melatonin treatment and found increased light chain 3 (LC3) and p62 protein levels in AGE-treated EPCs. However, lysosome-associated membrane protein 2 expression was decreased, indicating that autophagy flux was impaired in EPCs treated with AGEs. We then evaluated autophagy flux after melatonin treatment and found that melatonin increased the LC3 levels, but attenuated the accumulation of p62, suggesting a stimulatory effect of melatonin on autophagy flux. Blockage of autophagy flux by chloroquine partially abolished the protective effects of melatonin, indicating that autophagy flux is involved in the protective effects of melatonin. Furthermore, we found that the AMPK/mTOR signaling pathway is involved in autophagy flux stimulation by melatonin. An in vivo study also illustrated that melatonin treatment ameliorated impaired wound healing in a streptozotocin-induced diabetic wound healing model. Thus, our study shows that melatonin protects EPCs against apoptosis and dysfunction via autophagy flux stimulation and ameliorates impaired wound healing in vivo, providing insight into its mechanism of action in diabetic wound healing.

The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases

  • Lee, Tae Wook;Heo, Soon Chul;Kwon, Yang Woo;Park, Gyu Tae;Yoon, Jung Won;Kim, Seung-Chul;Jang, Il Ho;Kim, Jae Ho
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.504-509
    • /
    • 2017
  • Ischemia is a serious disease, characterized by an inadequate blood supply to an organ or part of the body. In the present study, we evaluated the effects of the anti-microbial peptide SR-0379 on the stem cell-mediated therapy of ischemic diseases. The migratory and tube-forming abilities of human endothelial progenitor cells (EPCs) were enhanced by treatment with SR-0379 in vitro. Intramuscular administration of SR-0379 into a murine ischemic hindlimb significantly enhanced blood perfusion, decreased tissue necrosis, and increased the number of blood vessels in the ischemic muscle. Moreover, co-administration of SR-0379 with EPCs stimulated blood perfusion in an ischemic hindlimb more than intramuscular injection with either SR-0379 or EPCs alone. This enhanced blood perfusion was accompanied by a significant increase in the number of CD31- and ${\alpha}$-SMA-positive blood vessels in ischemic hindlimb. These results suggest that SR-0379 is a potential drug candidate for potentiating EPC-mediated therapy of ischemic diseases.