• Title/Summary/Keyword: ENCODER

Search Result 1,896, Processing Time 0.034 seconds

The Encoder Design of Punctured Turbo Trellis Coded Modulation applied to MPSK

  • Seon, Wang-Seok;Kim, Youn-Hyoung;Lee, Ho-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2071-2074
    • /
    • 2002
  • This paper introduces an encoder design method of Turbo TCM (Trellis Coded Modulation) with symbol puncturing. TTCM consists of two simple trellis codes in parallel and modulator. To obtain an good encoder, we calculate the free distance by the assumption that the punctured symbol is transmitted from the subset that consist of signals with the same systematic bit at random. We develop a search program to find the component encoder which maximize the free distance. Especially, for 8-PSK with code rate 2/3, we search for the component codes. We find a new encoder which has better BER performance than that of Robertson′s encoder. We verify the results through the simulation."

  • PDF

Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoder

  • Kim Ju-Chan;Hwang Seon-Hwan;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • This paper describes the ultra precise position estimation of a servomotor using a sinusoidal encoder based on Arcsine Interpolation Method for the cost reduction of circuit design. The amplitude and offset errors of the sinusoidal encoder output signals, from the encoder itself and analog signal processing procedures, are effectively compensated and on-line tuned by utilizing a low cost programmable differential amplifier without any special expensive equipment. For a theoretical evaluation of the practical resolution of this system, the relationship between the amplitude of ADC(Analog to Digital Converter) input signal errors and the anticipated resolution is also addressed. The performance of the proposed method is verified by comparing it with speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder in the experiments.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

Optical Path Analysis for the Optical Encoder using Slit Internal Reflection (슬릿 내부 반사를 이용한 광학식 인코더의 광경로 해석)

  • Kweon, Yong-Min;Kweon, Hyun-Kyu;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.69-77
    • /
    • 2017
  • This paper introduces an optical encoder using the reflection in the slit. The digital optical encoder is a sensor to generate a pulse according to the displacement. An optical encoder is composed of 3 parts: light source, slit plate and light-receiving element. In a conventional encoder, one slit produces one signal. The resolution of the digital optical encoder is determined by the number of slits in the encoder plate. The small slit size is most important among the factors that determine the resolution in a generic-type optical encoder. However, a small slit has low productivity and technical difficulties, so analog optical encoders have emerged as an alternative. Nonetheless, this alternative requires additional circuitry and equipment because of the noise and drafts in the analog signals. A new sensor is presented in this paper with a high resolution and a slit of the same size using the reflection in the slit. Then, the path of the light that passes through the slit ccording to the shape was analyzed, and some paths were expressed in the mathematical expressions. In addition, the optical paths were analyzed in the rectangular, octagonal, and circular encoders, and shown the obtained number of signals per slit by using them. Thus, we confirm that this method has the best performance in circle-shaped slits.

Development of an Algorithm for Detecting Angular Bisplacement with High Accuracy Based on the Dual-Encoder (이중 증분 엔코더에 기초한 초정밀 회전각도 변위 검출 알고리즘 개발)

  • Lee, Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.29-36
    • /
    • 2008
  • An optical rotary encoder is easy to implement for automation system applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using an incremental encoder and a counting device, it is easy to measure angular displacement, as the number of the output pulses is proportional to the rotational displacement. This method can only detect the angular placement once a pulse signal comes out of the encoder. The angular displacement detection period is strongly subject to the change of the angular displacement in case of ultimate low velocity range. They have ultimate long detection period or cannot even detect angular displacement at near zero velocity. This paper proposes an algorithm for detecting angular displacement by using a dual encoder system with two encoders of normal resolution. The angular displacement detecting algorithm is able to keep detection period moderately at near zero velocity and even detect constant angular displacement within nominal period. It is useful for motion control applications in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the angular displacement detection algorithm.

The design of high profile H.264 intra frame encoder (H.264 하이프로파일 인트라 프레임 부호화기 설계)

  • Suh, Ki-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2285-2291
    • /
    • 2011
  • In this paper, H.264 high profile intra frame encoder, which integrates intra prediction, context-based adaptive variable length coding(CAVLC), and DDR2 memory control module, is proposed. The designed encoder can be operated in 440 cycle for one-macroblock. In order to verify the encoder function, we developed the reference C from JM 13.2 and verified the developed hardware using test vector generated by reference C. The designed encoder is verified in the FPGA (field programmable gate array) with operating frequency of 200 MHz for DMA (direct memory access), operating frequency of 50 MHz of Encoder module, and 25 MHz for VIM(video input module). The number of LUT is 43099, which is about 20 % of Virtex 5 XC5VLX330.

Adaptive Importance Channel Selection for Perceptual Image Compression

  • He, Yifan;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3823-3840
    • /
    • 2020
  • Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compression model, the encoder simply sends the features of last layer to the decoder, which cannot allocate bits over different spatial regions in an efficient way. Besides, these methods do not fully exploit the contextual information under different receptive fields for better reconstruction performance. In this paper, to solve these issues, a novel auto-encoder model is designed for image compression, which can effectively transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, we conduct the multiply operation on the generated importance mask and the features of the last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an additional novel perceptual loss function for more accurate image details. Extensive experiments demonstrated that the proposed model can achieve significant superiority compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, our model shows better performance than the state-of-the-art convolutional neural network (CNN)-based image compression methods in terms of PSNR.

Complexity Analysis of a VHDL Implementation of the Bit-Serial Reed-Solomon Encoder (VHDL로 구현된 직렬승산 리드솔로몬 부호화기의 복잡도 분석)

  • Back Seung hun;Song Iick ho;Bae Jin soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.64-68
    • /
    • 2005
  • Reed-Solomon code is one of the most versatile channel codes. The encoder can be implemented with two famous structures: ordinary and bit-serial. The ordinary encoder is generally known to be complex and fast, while the bit-serial encoder is simple and not so fast. However, it may not be true for a longer codeword length at least in VHDL implementation. In this letter, it is shown that, when the encoder is implemented with VHDL, the number of logic gates of the bit-serial encoder might be larger than that of the ordinary encoder if the dual basis conversion table has to be used. It is also shown that the encoding speeds of the two VHDL implemented encoders are exactly same.

Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System (지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법)

  • Jung, Seungwon;Son, Minjae;Hwang, Eenjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

Implementation of CAVLC Encoder for the Image Compression in H.264/AVC (H.264/AVC용 영상압축을 위한 CAVLC 인코더 구현)

  • Jung Duck Young;Choi Dug Young;Jo Chang-Seok;Sonh Seung Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1485-1490
    • /
    • 2005
  • Variable length code is an integral component of many international standards on image and video compression currently. Context-based Adaptive Variable Length Coding(CAVLC) is adopted by the emerging JVT(also called H.264, and AVC in MPEG-4). In this paper, we design an architecture for CAVLC encoder, including a coeff_token encoder, level encoder, total_zeros encoder and run_before encoder. The designed CAVLC encoder can encode one syntax element in one clock cycle. As a result of implementation by Vertex-1000e of Xilinx, its operation frequency is 68MHz. Therefore, it is very suitable for video applications that require high throughput.