• 제목/요약/키워드: EMG model

검색결과 122건 처리시간 0.025초

Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors

  • Kim, Tae-Ho;Custodio, Raly James;Cheong, Jae Hoon;Kim, Hee Jin;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.584-590
    • /
    • 2019
  • Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer's disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptorbenzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with $IC_{50}$ of 1.19, $0.84{\mu}g/kg$, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.

Analysis of Human Body Suitability for Mattresses by Using the Level of PsychoPhysiological Relaxation and Development of Regression Model

  • Min, Seung Nam;Kim, Jung Yong;Kim, Dong Joon;Park, Yong Duck;Kim, Seoung Eun;Lee, Ho Sang
    • 대한인간공학회지
    • /
    • 제34권3호
    • /
    • pp.199-215
    • /
    • 2015
  • Objective: The purpose of this study is to find the level of physical relaxation of individual subject by monitoring psychophysiological biofeedback to different types of mattresses. And, the study also aims to find a protocol to make a selection of the best mattress based on the measured information. Background: In Korea, there are an increasing number of people using western style bed. However, they are often fastidious in choosing the right mattress for them. In fact, people use their past experience with their old mattress as well as the spontaneous experience they encounter in a show room to finally decide to buy a bed. Method: Total five mattresses were tested in this study. After measuring the elasticity of the mattresses, they were sorted into five different classes. Physiological and psychological variables including Electromyography (EMG), heart rates (HR), oxygen saturations (SaO2) were used. In addition, the peak body pressure concentration rate was used to find uncomfortably pressured body part. Finally, the personal factors and subjective satisfaction were also examined. A protocol was made to select the best mattress for individual subject. The selection rule for the protocol considered all the variables tested in this study. Results: The result revealing psychological comfort range of 0.68 to 0.95, dermal comfort range of 3.15 to 6.07, back muscle relaxation range of 0.25 to 1.64 and personal habit range of 2.0 to 3.4 was drawn in this study. Also a regression model was developed to predict biofeedback with the minimal use of biofeedback devices. Moreover results from the proposed protocol with the regression equation and subjective satisfaction were compared with each other for validation. Ten out of twenty subjects recorded the same level of relaxation, and eight subjects showed one-level difference while two subjects showed two-levels difference. Conclusion: The psychophysiological variables and suitability selection process used in this study seem to be used for selecting and assessing ergonomic products mechanically or emotionally. Application: This regression model can be applied to the mattress industry to estimate back muscle relaxation using dermal, psychophysiology and personal habit values.

착지 높이와 지면 형태가 하지 관절에 미치는 영향 (The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern)

  • 김은경
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

뇌졸중 환자의 로봇 재활 치료를 위한 실시간, 동시 및 비례형 근전도 제어 (Real-Time, Simultaneous and Proportional Myoelectric Control for Robotic Rehabilitation Therapy of Stroke Survivors)

  • 정영진;박혜연
    • 재활치료과학
    • /
    • 제7권1호
    • /
    • pp.79-88
    • /
    • 2018
  • 목적 : 본 연구에서는 뇌졸중 환자의 치료 효과를 증진시키기 위한 방법으로, 로봇 기반에 연속적이며, 실시간으로 환자의 의지에 따른 표면 근전도 신호에 비례한 제어가 가능한 최적 알고리즘을 구현 및 재활로봇과 PC소프트웨어에 적용기술을 개발하였다. 연구방법 : 뇌졸중 환자의 치료를 위한 재활로봇 제어 알고리즘 개발을 위해서 본 연구에서는 선형 재귀모델을 이용하였다. 또한, 이를 PC 소프트웨어에 적용하여 실제 근전도 신호에 비례하여 게임을 진행할 수 있도록 환경을 구축하였으며, 이를 활용하여 모의 훈련을 진행하였다. 결과 : 모의실험 결과 실제 움직인 위치와 선형 재귀모델로부터 추정된 위치의 결과가 상당히 유사하게 나타나는 것을 확인할 수 있었다. 또한 3명의 피험자를 대상으로 실험 한 결과, 3번의 각기 다른 시도에 따라 훈련이 진행되면서 그 결과가 좋아짐을 확인할 수 있었다. 결론 : 본 연구에서는 재활로봇에 적용 가능한 실시간으로 동작하는 근전도에 비례한 움직임을 유도해 낼 수 있는 선형 재귀 모델을 개발하였다. 또한, 이를 활용한 소프트웨어도 함께 구축하여 그 활용 가능성이 높음을 확인하였다. 향후 실제 재활로봇에 적용하여 자가-재활 및 원격재활 로봇에 기본 알고리즘으로 널리 활용될 수 있을 것이라 기대된다.

MicroRNA-200a Targets Cannabinoid Receptor 1 and Serotonin Transporter to Increase Visceral Hyperalgesia in Diarrhea-predominant Irritable Bowel Syndrome Rats

  • Hou, Qiuke;Huang, Yongquan;Zhang, Changrong;Zhu, Shuilian;Li, Peiwu;Chen, Xinlin;Hou, Zhengkun;Liu, Fengbin
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.656-668
    • /
    • 2018
  • Background/Aims MicroRNAs (miRNAs) were reported to be responsible for intestinal permeability in diarrhea-predominant irritable bowel syndrome (IBS-D) rats in our previous study. However, whether and how miRNAs regulate visceral hypersensitivity in IBS-D remains largely unknown. Methods We established the IBS-D rat model and evaluated it using the nociceptive visceral hypersensitivity test, myeloperoxidase activity assay, restraint stress-induced defecation, and electromyographic (EMG) activity. The distal colon was subjected to miRNA microarray analysis followed by isolation and culture of colonic epithelial cells (CECs). Bioinformatic analysis and further experiments, including dual luciferase assays, quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay, were used to detect the expression of miRNAs and how it regulates visceral hypersensitivity in IBS-D rats. Results The IBS-D rat model was successfully established. A total of 24 miRNAs were differentially expressed in the distal colon of IBS-D rats; 9 were upregulated and 15 were downregulated. Among them, the most significant upregulation was miR-200a, accompanied by downregulation of cannabinoid receptor 1 (CNR1) and serotonin transporter (SERT). MiR-200a mimic markedly inhibited the expression of CNR1/SERT. Bioinformatic analysis and luciferase assay confirmed that CNR1/SERT are direct targets of miR-200a. Rescue experiments that overexpressed CNR1/SERT significantly abolished the inhibitory effect of miR-200a on the IBS-D rats CECs. Conclusions This study suggests that miR-200a could induce visceral hyperalgesia by targeting the downregulation of CNR1 and SERT, aggravating or leading to the development and progression of IBS-D. MiR-200a may be a regulator of visceral hypersensitivity, which provides potential targets for the treatment of IBS-D.

신경근육 접합부의 종판 폭과 분포에 따른 운동단위 수의 추정에 관한 연구 (A Study on Estimation of Numbers of Motor Unit related to the Widths and Distribution of Endplate in Neuromuscular Junction)

  • 이호용;김덕영;박중호;정철기;김성환
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.81-92
    • /
    • 2011
  • 본 논문에서는 표면 근전도(surface electromyogram : SEMG)와 근육모델링을 이용하여 신경근육 접합부(neuromuscular junction, NMJ)의 종판(end plate) 폭(widths)과 분포(distribution)에 따른 운동단위(motor unit, MU)수를 추정하는 새로운 방법을 제안하였다. 이를 위하여 MU-시뮬레이터(motor unit simulator)와 EPZ-시뮬레이터(end plate zone simulator)를 설계하고, 본 연구에서 제안된 방법과 기존방법들을 비교하였다. 제안된 MU-시뮬레이터로 시뮬레이션 된 SMUAP(single motor unit action potential : 단일운동단위활동전위)와 CMAP(compound muscle action potential : 복합근활동전위)은 검출된 근신호와 유사하였다. EPZ-시뮬레이터는 신경근육 접합부의 종판 폭과 분포를 바꾸어 가면서 운동단위수를 추정하기 위하여 설계하였다. 실험결과 운동단위 수는 약 450 개, 근섬유수 약 340 개, 종판 폭은 약 6 mm이고, 종판분포는 불규칙하게 분포된 것 (randomly distributed)으로 추정되었다. 본 연구에서 제안된 방법은 인간 근육의 생체조직검사로 측정한 운동단위의 수와 비교 가능한 결과가 나왔다.

공압근육을 사용한 발목근력보조로봇의 개발 (Development of Ankle Power Assistive Robot using Pneumatic Muscle)

  • 김창순;김정엽
    • 대한기계학회논문집A
    • /
    • 제41권8호
    • /
    • pp.771-782
    • /
    • 2017
  • 본 논문은 노약자들의 발목근력보조를 위한 착용형 로봇에 대해서 서술하였다. 기존 착용형 로봇들은 보행 시 필요한 근력을 보조하기 위해 대부분 모터와 감속기를 사용하였다. 하지만 모터와 감속기의 조합은 무게가 무거울 뿐만 아니라 감속기 치차의 마찰때문에 실제 사람의 근육과 달리 강성과 토크를 동시에 제어하기 어려운 한계가 있다. 따라서 본 연구에서는 모터/감속기 조합보다 가볍고 안전하며 근력을 보조하는 힘을 충분히 발휘할 수 있는 Mckibben 공압 근육을 사용하였다. 발목의 피칭 모션에 이용되는 종아리 가자미근 및 앞정강근의 힘을 한 쌍의 공압 근육을 사용한 상극구동으로 보조하였으며, 상극구동제어를 위해 상극구동 모델 파라미터들을 실험적으로 도출하였다. 사용자의 보행의지를 판단하고자 발바닥에 부착된 압력변위센서로 압력과 압력중심위치를 측정하여 발바닥의 하중과 발목토크를 계산하였고, 이를 기반으로 공압 근육 관절의 강성과 토크를 동시에 제어하였다. 최종적으로, 트레드밀에서 근전도 신호를 측정하여 발목근력보조로봇의 성능을 실험적으로 입증하였다.

케틀벨 스윙 시 적당한 케틀벨의 무게는 얼마일까? (What is the Appropriate Kettlebell Mass for a Kettlebell Swing?)

  • Kim, Bo Kyeong;Thau, Dao Van;Yoon, Sukhoon
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.308-313
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.

오르막보행 시 타이거스텝 하지 움직임에 미치는 영향 (Effect of Tiger Step on Lower Extremities during Uphill Walking)

  • Kang, Jihyuk;Yoon, Sukhoon
    • 한국운동역학회지
    • /
    • 제32권1호
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.

준비동작의 형태 변화에 따른 신체 움직임의 운동역학적 분석 (Sports Biomechanical Analysis of Physical Movements on the Basis of the Patterns of the Ready Poses)

  • 이중숙
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.179-195
    • /
    • 2002
  • 본 연구의 목적은 현대 스포츠가 점점 스피디하고 격렬한 상황의 연출을 요구하고 있는 상황에서 순간적으로 신속 정확한 판단력과 그에 따른 재빠르고 민첩한 행동이 필요할 때가 많으므로 준비동작에 대한 운동역학적 메카니즘의 이해가 필요하다고 판단되어 연구를 실시하였다. 따라서 본 연구에서는 준비동작의 형태 변화(open stance & cross stance)에 따른 신체움직임을 운동역학적인 분석을 통하여 바람직한 준비동작의 모델을 제시하는데 있으며, 이러한 연구 목적을 달성하기 위하여 연구대상자는 부산 B대학교 핸드볼 선수인 남학생 5명과 부산 S대학교 사격 선수인 여학생 5명을 선정하여 실험하였다. 준비자세에서의 좌 우 전방향으로 이동시의 동작을 2대의 고속 비디오 카메라와 2대의 지면반력기 그리고 전신반응측정 장비를 이용하여 자료를 수집하였고, 준비자세에서의 좌 우 전방향 이동시의 메카니즘을 분석한 결과 다음과 같은 결론을 얻었다. 첫째, 준비자세에서 좌 우 전방향 이동시 cross stance 자세가 open stance 자세 보다 신체중심이동 속도가 빠른 것으로 분석되었으며, Take-off시 슬관절의 굴곡각은 약 $175^{\circ}$의 각도를 유지하고, 고관절의 굴곡각은 약 $172^{\circ}$의 각도를 유지하여 준비자세를 취하는 것이 바람직한 것으로 분석되었다. 둘째, 준비자세에서의 좌 우 전방향으로 이동시 지지시간과 지면반력분석 결과를 종합해 보면 준비동작에서 왼쪽방향으로 이동시 가장 빠른 신체중심이동 속도를 나타냈다. 셋째, 준비자세에서 좌 우 전방향 이동시 지면반력 분석 결과에서도 cross stance 자세가 open stance 자세보다는 왼발과 오른발에 체중을 적절히 분산시켜 준비동작을 수행할 수 있도록 하여 상해를 예방할 수 있으므로 cross stance 준비자세가 바람직한 것으로 분석되었다. 따라서 준비자세의 역학적인 메가니즘은 cross stance 자세가 open stance 자세보다 보다 바람직한 준비자세라고 할 수 있으나 반드시 개인차도 고려되어져야 할 것이다.