DOI QR코드

DOI QR Code

Development of Ankle Power Assistive Robot using Pneumatic Muscle

공압근육을 사용한 발목근력보조로봇의 개발

  • Kim, Chang-Soon (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Jung-Yup (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 김창순 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김정엽 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2016.12.08
  • Accepted : 2017.04.25
  • Published : 2017.08.01

Abstract

This paper describes the development of a wearable robot to assist ankle power for the elderly. Previously developed wearable robots have generally used motors and gears to assist muscle power during walking. However, the combination of motor and reduction gear is heavy and has limitations on the simultaneous control of stiffness and torque due to the friction of the gear reducer unlike human muscles. Therefore, in this study, Mckibben pneumatic muscle, which is lighter, safer, and more powerful than an electric motor with gear, was used to assist ankle joint. Antagonistic actuation using a pair of pneumatic muscles assisted the power of the soleus muscles and tibialis anterior muscles used for the pitching motion of the ankle joint, and the model parameters of the antagonistic actuator were experimentally derived using a muscle test platform. To recognize the wearer's walking intention, foot load and ankle torque were calculated by measuring the pressure and the center of pressure of the foot using force and linear displacement sensors, and the stiffness and the torque of the pneumatic muscle joint were then controlled by the calculated ankle torque and foot load. Finally, the performance of the developed ankle power assistive robot was experimentally verified by measuring EMG signals during walking experiments on a treadmill.

본 논문은 노약자들의 발목근력보조를 위한 착용형 로봇에 대해서 서술하였다. 기존 착용형 로봇들은 보행 시 필요한 근력을 보조하기 위해 대부분 모터와 감속기를 사용하였다. 하지만 모터와 감속기의 조합은 무게가 무거울 뿐만 아니라 감속기 치차의 마찰때문에 실제 사람의 근육과 달리 강성과 토크를 동시에 제어하기 어려운 한계가 있다. 따라서 본 연구에서는 모터/감속기 조합보다 가볍고 안전하며 근력을 보조하는 힘을 충분히 발휘할 수 있는 Mckibben 공압 근육을 사용하였다. 발목의 피칭 모션에 이용되는 종아리 가자미근 및 앞정강근의 힘을 한 쌍의 공압 근육을 사용한 상극구동으로 보조하였으며, 상극구동제어를 위해 상극구동 모델 파라미터들을 실험적으로 도출하였다. 사용자의 보행의지를 판단하고자 발바닥에 부착된 압력변위센서로 압력과 압력중심위치를 측정하여 발바닥의 하중과 발목토크를 계산하였고, 이를 기반으로 공압 근육 관절의 강성과 토크를 동시에 제어하였다. 최종적으로, 트레드밀에서 근전도 신호를 측정하여 발목근력보조로봇의 성능을 실험적으로 입증하였다.

Keywords

References

  1. Kim, K., Kim, J. J., Heo, M., Jeong G. Y., Ko M. H. and Kwon, T. K., 2010, "Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque," Journal of Institute of Control, Robotics and Systems, Vol. 16, No. 10, pp. 948-956. https://doi.org/10.5302/J.ICROS.2010.16.10.948
  2. Gordon, K. E. and Ferris, D. P., 2007, "Learning to Walk with a Robotic Ankle Exoskeleton," Journal of Biomechanics, Vol. 40, No. 12, pp. 2636-2644. https://doi.org/10.1016/j.jbiomech.2006.12.006
  3. Park, Y. L., Chen, B. R., Young, D., Stirling, L., Wood, R. J., Goldfield, E. C. and Nagpal, R., 2014, "Design and Control of a Bio-inspired Soft Wearable Robotic Device for Ankle-foot Rehabilitation," Bioinspiration & Biomimetics, Vol. 9, No. 1, 016007. https://doi.org/10.1088/1748-3182/9/1/016007
  4. Wehner, M., Quinlivan, B., Aubin, P. M., Martinez- Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R. and Walsh, C., 2013, "A Lightweight Soft Exosuit for Gait Assistance," Robotics and Automation (ICRA), 2013 IEEE International Conference, pp. 3362-3369.
  5. Kim, R. H. and Kang, B. S., 2013, "Teleoperation of Pneumatic Artificial Muscles Based on Joint Stiffness of Master Device," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 12, pp. 1521-1527. https://doi.org/10.3795/KSME-A.2013.37.12.1521
  6. Kang, B. S., 2011, "Model Estimation and Precise Position Control of an Antagonistic Actuation with Pneumatic Artificial Muscles," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 5, pp. 533-541. https://doi.org/10.3795/KSME-A.2011.35.5.533
  7. Tondu, B. and Lopez, P., 2000, "Modeling and Control of McKibben Artificial Muscle Robot Actuators," IEEE control systems, Vol. 20, No. 2, pp. 15-38.
  8. Tondu, B. and Lopez, P., 1997, "The McKibben Muscle and its Use in Actuating Robot-arms Showing Similarities with Human Arm Behaviour," Industrial Robot: An International Journal, Vol. 24, No. 6, pp 432-439. https://doi.org/10.1108/01439919710192563
  9. Neumann Donald, A., 2009, Kinesiology of the Musculoskeletal System, Elsevier Science, New York, p. 687.
  10. Shin, D., Sardellitti, I., Park, Y. L. and Khatib, O., Cutkosky, M., 2010, "Design and Control of a Bioinspired Human-friendly Robot," The International Journal of Robotics Research, Vol. 29, No. 5, pp. 571-584. https://doi.org/10.1177/0278364909353956
  11. https://youtu.be/pNlS6bKO4vw.