• Title/Summary/Keyword: EMG Sensor

Search Result 90, Processing Time 0.026 seconds

Quantitative Rehabilitation Extent Monitoring for Unilateral Lower Extremity Disabled Patients using Simulated Gait Pattern Analysis (재활환자 모의보행 패턴분석을 이용한 하지 편측 장애자의 정량적 재활상태 모니터링)

  • Moon, Dong-Jun;Kim, Ju-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.227-233
    • /
    • 2014
  • In this paper, to quantitatively evaluate the degree of rehabilitation for the disabled of unilateral lower extremity, we compared the EMG pattern of normal and simulated abnormal gait. The EMG signal was measured at a rate of 1 kHz on the quadriceps and biceps femoris, the pressure sensor was attached to the sole in order to distinguish the gait cycle. Integrated EMG (IEMG) was obtained by the gait cycle, and classified four patterns that were the normal gait pattern, amplitude decrease pattern, reversed pattern, and irregular pattern. For comparison of the patterns, a curve fitting was performed using the trigonometric functions. The result of curve fitting, the method using a variable A that corresponds to the amplitude of the regression curve was able to distinguish the reverse pattern and remaining pattern. The coefficient of determination ($R^2$) representing coincidence of the pattern of the regression curve and EMG was confirmed the biggest value at the normal gait. Therefore, the degree of normal gait can be confirmed using the coefficient of determination. This results show that it is possible to quantitatively confirm the degree of unilateral lower extremity disabled rehabilitation, and it will be contributed to the study of efficient rehabilitation methods by objective analysis.

Effect of Muscle Pre-activation Properties on the Magnitude of Joint Torque during Voluntary Isometric Knee Extension (등척성 무릎 토크 발생 시 사전활성화 유형의 차이가 최대 자발적 토크 생성에 미치는 영향)

  • Kim, Jong-Ah;Shin, Narae;Lee, Sungjune;Xu, Dayuan;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.140-147
    • /
    • 2021
  • Objective: The purpose of this study is to identify the mechanism of changes in maximum voluntary torque with the magnitude and duration of pre-activation torque during voluntary isometric knee extension. Method: 11 male subjects (age: 25.91±2.43 yrs., height: 173.12±3.51 cm, weight: 76.45±7.74 kg) participated in this study. The subjects were required to produce maximal voluntary isometric torque with a particular pre-activation torque condition. The properties of pre-activation torque consisted of the combinations of 1) three levels of magnitude, e.g., 32 Nm, 64 Nm, 96 Nm, and 2) two levels of duration, e.g., 1 sec, and 3 sec; thus, a total of six conditions were given to the subjects. The force and EMG data were measured using the force transducers and wireless EMG sensor, respectively. Results: The results showed that the maximum voluntary torque increased the most with relatively large and fast (96 Nm, 1 sec) pre-activation condition. Similarly, with relatively large and fast (96 Nm, 1 sec) preactivation, it was found that the integrated EMG (iEMG) of the agonist muscles increased, while no significant changes in the co-contraction of the antagonist muscles for the knee extension. Also, the effect of pre-activation conditions on the rate of torque development was not statistically significant. Conclusion: The current findings suggest that relatively larger in magnitude and shorter in duration as the properties of pre-activation lead to a larger magnitude of maximal voluntary torque, possibly due to the increased activity of the agonist muscles during knee extension.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

A Study on Walking Intention Detection of Gait Slope and Velocity of the Rollator Based on IR Sensor (IR센서 기반 보행보조기를 이용한 보행 시 경사상태에 따른 보행의지 파악에 관한 연구)

  • Lee, H.J.;Kang, S.R.;Yu, C.H.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • The aims of this study are to investigate the walking intention detection of a rollator based on Infraed (IR) sensor measuring knee joint anterior displacement and leg muscle activities. We used Active Walker attached IR sensor to measure the knee joint anterior displacement and EMG signal of leg muscles(rectus femoris, biceps femoris, tibialis anterior, gastrocnemius) were taken by Delsys bagnli-8ch. Subjects were eight healthy males(age $23.7{\pm}0.5years$, height $175.4{\pm}2.3cm$, weight $70.6{\pm}5.6kg$) and they were involved in experiments which had been proceeded 30 minutes a week, during 3 weeks. This system indicates that the knee joint anterior displacement had the distinction increases according to the gait slope and velocity. We showed the increase of the femoral muscle activities along the anterior tilt and the increase of the crural muscle activities along the posterior tilt.

  • PDF

Development of Wearable Robot for Elbow Motion Assistance of Elderly (노약자의 팔꿈치 거동 지원을 위한 착용형 로봇 개발)

  • Jang, Hye-Yoen;Han, Chang-Soo;Kim, Tae-Sik;Jang, Jae-Ho;Han, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • The purpose of this study is to develop the algorithm which can control muscle power assist robot especially for elderly. Recently, wearable robots for power assistance are developed by many researchers, and its application fields are also variable such as for medical or military equipment. However, there are many technical barriers to develop the wearable robot. This study suggest a control method improving performance of a wearable robot system by using a EMG signal of major muscles and a force sensor signal as command signal of system. The result of the robot Prototype efficiency experiment, the case of Maximum Isometric motion it suggest 100% power of muscle, the man need only 66% of MVIC(Maximum Voluntary Isometric Contraction) to lift 5kg dumbbell without robot assist. However the man needs only 52% of MVIC to lift 5kg dumbbell with robot assist. Therefore 20% muscle power increased with robot assist. Also, we designed light weight robot mechanism that extract the command signal verified and drive the wanted motions.

Comparison of Muscle Activity of Vastus Lateralis and Medialis Oblique among Knee Extension Angles at 90°, 135°, 180° in Sitting Position

  • Jeon, InCheol
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • Purpose: This study compared the muscle activities of the Vastus medialis oblique (VMO) and the Vastus lateralis (VL) at three different knee extension angles: 90°, 135°, and 180° in the sitting position. Methods: Twenty subjects between 20 and 30 years of age participated in the study. A mobile phone application called the Clinometer was used to measure the knee joint angle. Electromyography (EMG) was performed to measure the muscle activities of the VMO and VL muscles during knee isometric extension exercises. The pulling sensor was used to maintain 70% of the maximum strength of the knee extensor continuously in the sitting position. After attaching the EMG sensor, the subjects were asked to perform isometric knee extension exercises randomly among three knee extension angles (90°, 135°, or 180°) in the sitting position. One-way repeated measures analysis of the variance and a Bonferroni post hoc test was used to identify the VMO and VL muscle activity during knee extension angles among 90°, 135°, and 180°. Results: The VMO and VL muscle activities increased with increasing knee extension angle in the sitting position (p<0.01). Conclusions: Knee extension exercise at a 180° angle in the sitting position can be recommended to increase the muscle activity of the VMO and VL muscle activities efficiently.

Development and physiological assessments of multimedia avian esophageal catheter system

  • Nakada, Kaoru;Hata, Jun-ichi
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • We developed multimedia esophageal catheters for use with birds to measure and record ECG and angular velocity while anesthesized, at rest, and in flight. These catheters enable estimates of blood pressure based on readings given by an angular velocity sensor and by RR intervals of ECG affected by EMG. In our experiments, the catheters had the following characteristics: 1. Esophageal catheters offer a topological advantage with 8-dB SNR improvement due to elimination of electromyography (EMG). 2. We observed a very strong correlation between blood pressure and the angular velocity of esophageal catheter axial rotation. 3. The impulse conduction pathway (Purkinje fibers) of the cardiac ventricle has a direction opposite to that of the mammalian pathway. 4. Sympathetic nerves predominate in flight, and RR interval variations are strongly suppressed. The electrophysiological data obtained by this study provided especially the state of the avian autonomic nervous system activity, so we can suspect individual's health condition. If the change of the RR interval was small, we can perform an isolation or screening from the group that prevent the pandemics of avian influenza. This catheter shall be useful to analysis an avian autonomic system, to perform a screening, and to make a positive policy against the massive infected avian influenza.

HandButton: Gesture Recognition of Transceiver-free Object by Using Wireless Networks

  • Zhang, Dian;Zheng, Weiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.787-806
    • /
    • 2016
  • Traditional radio-based gesture recognition approaches usually require the target to carry a device (e.g., an EMG sensor or an accelerometer sensor). However, such requirement cannot be satisfied in many applications. For example, in smart home, users want to control the light on/off by some specific hand gesture, without finding and pressing the button especially in dark area. They will not carry any device in this scenario. To overcome this drawback, in this paper, we propose three algorithms able to recognize the target gesture (mainly the human hand gesture) without carrying any device, based on just Radio Signal Strength Indicator (RSSI). Our platform utilizes only 6 telosB sensor nodes with a very easy deployment. Experiment results show that the successful recognition radio can reach around 80% in our system.

Change in Pelvic Motion Caused by Visual Biofeedback Influences Trunk and Hip Muscle Activities During Side-Lying Hip Abduction in Asymptomatic Individuals

  • Yu, Ilyoung;Kang, Minhyeok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.3
    • /
    • pp.1818-1822
    • /
    • 2019
  • Background: Ipsilateral pelvic elevation has been reported as a common compensatory movement during side-lying hip abduction. It has been reported that pelvic elevation inhibits sufficient contraction of gluteus medius. However, few studies have identified the effects of controlled pelvic elevation on the trunk and hip muscles. Objective: To examine the effects of controlled pelvic elevation using visual biofeedback on the muscle activity of the trunk and hip muscles. Design: Crossover study. Methods: Twelve healthy males performed side-lying hip abduction exercises with and without visual biofeedback for pelvic elevation. Electromyography (EMG) activities of the gluteus medius, quadratus lumborum, and multifidus were analyzed using a wireless EMG system while the ipsilateral pelvic elevation angle was measured using a motion sensor during side-lying hip abduction exercises. Results: EMG activities of the gluteus medius (p = .002), quadratus lumborum (p = .022), and multifidus (p = .020) were significantly increased and ipsilateral pelvic elevation was significantly decreased (p = .001) during side-lying hip abduction with visual biofeedback compared to without visual biofeedback. Conclusions: The results of this study suggest that the application of biofeedback for pelvic motion could improve the trunk and hip muscle activation pattern and decrease compensatory pelvic motion during side-lying hip abduction exercise.

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.