• Title/Summary/Keyword: EM Modeling

Search Result 118, Processing Time 0.024 seconds

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

VOICE SOURCE ESTIMATION USING SEQUENTIAL SVD AND EXTRACTION OF COMPOSITE SOURCE PARAMETERS USING EM ALGORITHM

  • Hong, Sung-Hoon;Choi, Hong-Sub;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.893-898
    • /
    • 1994
  • In this paper, the influence of voice source estimation and modeling on speech synthesis and coding is examined and then their new estimation and modeling techniques are proposed and verified by computer simulation. It is known that the existing speech synthesizer produced the speech which is dull and inanimated. These problems are arised from the fact that existing estimation and modeling techniques can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can represent a variety of source characteristics. First, we divide speech samples in one pitch region into four parts having different characteristics. Second, the vocal-tract parameters and voice source waveforms are estimated in each regions differently using sequential SVD. Third, we propose composite source model as a new voice source model which is represented by weighted sum of pre-defined basis functions. And finally, the weights and time-shift parameters of the proposed composite source model are estimeted uning EM(estimate maximize) algorithm. Experimental results indicate that the proposed estimation and modeling methods can estimate more accurate voice source waveforms and represent various source characteristics.

  • PDF

EM Algorithm based Neuro-Fuzzy Modeling (EM알고리즘을 기반으로 한 뉴로-퍼지 모델링)

  • Kim, Seoung-Suk;Jun, Beung-Suk;Kim, Ju-Sik;Ryu, Jeoung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2846-2849
    • /
    • 2002
  • 본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

A Study on Noisy Speech Recognition Using a Bayesian Adaptation Method (Bayesian 적응 방식을 이용한 잡음음성 인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2001
  • An expectation-maximization (EM) based Bayesian adaptation method for the mean of noise is proposed for noise-robust speech recognition. In the algorithm, the on-line testing utterances are used for the unsupervised Bayesian adaptation and the prior distribution of the noise mean is estimated using the off-line training data. For the noisy speech modeling, the parallel model combination (PMC) method is employed. The proposed method has shown to be effective compared with the conventional PMC method for the speech recognition experiments in a car-noise condition.

  • PDF

Modeling sharply peaked asymmetric multi-modal circular data using wrapped Laplace mixture (겹친라플라스 혼합분포를 통한 첨 다봉형 비대칭 원형자료의 모형화)

  • Na, Jong-Hwa;Jang, Young-Mi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.863-871
    • /
    • 2010
  • Until now, many studies related circular data are carried out, but the focuses are mainly on mildly peaked symmetric or asymmetric cases. In this paper we studied a modeling process for sharply peaked asymmetric circular data. By using wrapped Laplace, which was firstly introduced by Jammalamadaka and Kozbowski (2003), and its mixture distributions, we considered the model fitting problem of multi-modal circular data as well as unimodal one. In particular we suggested EM algorithm to find ML estimates of the mixture of wrapped Laplace distributions. Simulation results showed that the suggested EM algorithm is very accurate and useful.

Modeling on asymmetric circular data using wrapped skew-normal mixture (겹친왜정규혼합분포를 이용한 비대칭 원형자료의 모형화)

  • Na, Jong-Hwa;Jang, Young-Mi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.241-250
    • /
    • 2010
  • Over the past few decades, several studies have been made on the modeling of circular data. But these studies focused mainly on the symmetrical cases including von Mises distribution. Recently, many studies with skew-normal distribution have been conducted in the linear case. In this paper, we dealt the problem of fitting of non-symmetrical circular data with wrapped skew-normal distribution which can be derived by using the principle of wrapping. Wrapped skew-normal distribution is very flexible to asymmetical data as well as to symmetrical data. Multi-modal data are also fitted by using the mixture of wrapped skew-normal distributions. To estimate the parameters of mixture, we suggested the EM algorithm. Finally we verified the accuracy of the suggested algorithm through simulation studies. Application with real data is also considered.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

Consideration of EM Analysis for Unclonnable PUF (복제 방지용 PUF의 전자계 해석 방안)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.80-82
    • /
    • 2012
  • In this paper, we present electromagnetic modeling to design unclonable PUFs with frequency-dependant materials corresponding to Debye dispersion. To demonstrate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface. The pulse traveling wave at a vacuum-medium interface were reflected, and transmitted wave were dissipated. As a result, 1-D PUF with Debye dispersion material structure can be applied and FDTD calculation for PUF modeling is a good approximation.

  • PDF