• Title/Summary/Keyword: EM기법

Search Result 162, Processing Time 0.022 seconds

Privacy-Preserving Estimation of Users' Density Distribution in Location-based Services through Geo-indistinguishability

  • Song, Seung Min;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.161-169
    • /
    • 2022
  • With the development of mobile devices and global positioning systems, various location-based services can be utilized, which collects user's location information and provides services based on it. In this process, there is a risk of personal sensitive information being exposed to the outside, and thus Geo-indistinguishability (Geo-Ind), which protect location privacy of LBS users by perturbing their true location, is widely used. However, owing to the data perturbation mechanism of Geo-Ind, it is hard to accurately obtain the density distribution of LBS users from the collection of perturbed location data. Thus, in this paper, we aim to develop a novel method which enables to effectively compute the user density distribution from perturbed location dataset collected under Geo-Ind. In particular, the proposed method leverages Expectation-Maximization(EM) algorithm to precisely estimate the density disribution of LBS users from perturbed location dataset. Experimental results on real world datasets show that our proposed method achieves significantly better performance than a baseline approach.

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

Evaluation of Diagnostic Performance of a Polymerase Chain Reaction for Detection of Canine Dirofilaria immitis (개 심장사상충을 진단하기 위한 중합연쇄반응검사 (PCR)의 진단적 특성 평가)

  • Pak, Son-Il;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • Diagnostic performance of polymerase chain reaction (PCR) for detecting Dirofilaria immitis in dogs was evaluated when no gold standard test was employed. An enzyme-linked immunosorbent assay test kit (SnapTM, IDEXX, USA) with unknown parameters was also employed. The sensitivity and specificity of the PCR from two-population model were estimated by using both maximum likelihood using expectation-maximization (EM) algorithm and Bayesian method, assuming conditional independence between the two tests. A total of 266 samples, 133 samples in each trial, were randomly retrieved from the heartworm database records during the year 2002-2004 in a university animal hospital. These data originated from the test results of military dogs which were brought for routine medical check-up or testing for heartworm infection. When combined 2 trials, sensitivity and specificity of the PCR was 96.4-96.7% and 97.6-98.8% in EM and 94.4-94.8% and 97.1-98% in Bayesian. There were no statistical differences between estimates. This finding indicates that the PCR assay could be useful screening tool for detecting heartworm antigen in dogs. This study was provided further evidences that Bayesian approach is an alternative approach to draw better inference about the performance of a new diagnostic test in case when either gold test is not available.

A Study of Analysis Method for the Track geometry measuring data on High Speed Railway (고속철도 궤도검측자료 분석기법에 관한 연구)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.47-51
    • /
    • 2006
  • Measuring the track geometry of a high-speed railway is the most important task in track construction and track maintenance work. Measuring accuracy is particularly sign the formulation of the maintenance plan and in the assessment of the work quality, and because it can set the train speed limit. To determine the track geometry of a high-speed railway, it is important to use KNR's track recording coach (EM-120). According to the result of the spectrum analysis, noise near the 1-m wave band was found on the track recording data. A new filter was thus applied to remove the noise from the track recording data. A similar result can be acquired when this method is used in real track geometry.

Development of the Water-leakage Detection Method Through the Geophysical Test on the Artificial Ground (모의지반 실험을 통한 누수영역 탐지기술 개발)

  • Kwon, Hyoung-Seok;Mitsuhata, Yuji;Uchida, Toshihiro
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A small loop-loop multi-frequency electromagnetic(EM) induction method is a useful technique to map a resistivity distribution efficiently and non-destructively. However, for quantitative interpretation and depth sounding, the quality of measured data is crucial. In this paper, we propose a bias correction of measured data by using background noise measurements to obtain reliable data, and propose an evaluation technique of apparent that can provide a resistivity image easily. We have performed small loop-loop EM measurements to detect water saturation in a man-made test site. The application of our proposed techniques to the measured data was successful.

  • PDF

Factored MLLR Adaptation for HMM-Based Speech Synthesis in Naval-IT Fusion Technology (인자화된 최대 공산선형회귀 적응기법을 적용한 해양IT융합기술을 위한 HMM기반 음성합성 시스템)

  • Sung, June Sig;Hong, Doo Hwa;Jeong, Min A;Lee, Yeonwoo;Lee, Seong Ro;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.213-218
    • /
    • 2013
  • One of the most popular approaches to parameter adaptation in hidden Markov model (HMM) based systems is the maximum likelihood linear regression (MLLR) technique. In our previous study, we proposed factored MLLR (FMLLR) where each MLLR parameter is defined as a function of a control vector. We presented a method to train the FMLLR parameters based on a general framework of the expectation-maximization (EM) algorithm. Using the proposed algorithm, supplementary information which cannot be included in the models is effectively reflected in the adaptation process. In this paper, we apply the FMLLR algorithm to a pitch sequence as well as spectrum parameters. In a series of experiments on artificial generation of expressive speech, we evaluate the performance of the FMLLR technique and also compare with other approaches to parameter adaptation in HMM-based speech synthesis.

Depth Map Pre-processing using Gaussian Mixture Model and Mean Shift Filter (혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1155-1163
    • /
    • 2011
  • In this paper, we propose a new pre-processing algorithm applied to depth map to improve the coding efficiency. Now, 3DV/FTV group in the MPEG is working for standard of 3DVC(3D video coding), but compression method for depth map images are not confirmed yet. In the proposed algorithm, after dividing the histogram distribution of a given depth map by EM clustering method based on GMM, we classify the depth map into several layered images. Then, we apply different mean shift filter to each classified image according to the existence of background or foreground in it. In other words, we try to maximize the coding efficiency while keeping the boundary of each object and taking average operation toward inner field of the boundary. The experiments are performed with many test images and the results show that the proposed algorithm achieves bits reduction of 19% ~ 20% and computation time is also reduced.

Analysis of Medical Images Using EM-based Relationship Method (EM기반 관계기법을 이용한 의료영상 분석)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.191-199
    • /
    • 2009
  • The integrated medical information system is an effective medical diagnosis assistance system which offers an environment in which medial images and diagnosis information can be shared. Because of the large-scale medical institutions and their cooperating organizations are operating the integrated medical information systems, they can share medical images and diagnosis information. However, this system can only stored and transmitted information without other functions. To resolve this problem and to enhance the efficiency of diagnostic activities, a medical image analysis system is necessary. In this paper, the proposed relationship method analyzes medical images for features generation. Under this method, the medical images have been segmented into several objects. The medical image features have been extracted from each segmented image. Then, extracted features were applied to the Relationship Method for medical image analysis. Several experimental results that show the effectiveness of the proposed method are also presented.

A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects (객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법)

  • 박종현;박순영;오일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1902-1911
    • /
    • 1999
  • In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.

  • PDF