• Title/Summary/Keyword: ELEVATED $CO_2+$ELEVATED TEMPERATURE

Search Result 170, Processing Time 0.029 seconds

Effects of Elevated $CO_2$ and Global Warming on Growth Parameters, Biomass Production and Its Partitioning of Rice ($CO_2$ 농도의 상승과 온난화환경이 수도의 생장, 물질생산 및 그 분배에 미치는 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • The influence of elevated CO2 and temperature on growth parameters, biomass production and its partitioning of rice (Oryza sativa L.cv. Chukwangbyeo) were investigated in the three experiments (1991-1993). Rice plants were grown from transplanting to harvest at either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in combination with either four or seven temperature regimes ranging form ambient temperature (AT) to AT plus 3$^{\circ}C$.From transplanting to panicle initiation, crop growth rate (CGR) was enhanced by up to 27% with elevated CO2 , primarily due to an an increase in leaf area index. although net assimilatiion rate was also greater at elevated CO2. The effect of elevated CO2 varied with temperature. During the reproductive phase, CGR declined linearly with increased temperature, and was greater at elevated CO2 . Elevated CO2 increased final crop biomass and panicle weight 30% respectively at AT(27.6$^{\circ}C$ : 1991) . However, there was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was also no effect of CO2 on biomass pratitioning into vegetative and reproductive organs (harvest index)) at AT, although higher temperature could affect that by inducing spikelet sterility. These results suggest that elevated CO2 could enhance rice producivity througth promoted growth and biomass production , but its positive effects may be less at higher temperatures.

  • PDF

Effects of Elevated $CO_2$ and Temperature on Competition between Rice and Echinochloa glabrescens Seedlings

  • Kim, Han-Yong
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The objective of this study was to determine how elevated $CO_2$ and temperature affected early growth and competition between direct seeded rice (Oryza sativa) and a common paddy weed (Echinochloa glabrascens). By using temperature gradient chambers. Rice and E. glabrescens were grown for 5 weeks at ratios of 1:0. 3:1 and 0:1 at three temperatures ($16.4^{\circ}C,\;19.8^{\circ}C,\;and\;22.2^{\circ}C$) and either in ambient (361ppm) or elevated (566ppm) $CO_2$. For both species. elevated $CO_2$ had no effect on mainstem leaf number while air temperature had a slight positive effect which was greater in E. glabrescens than rice. With elevated $CO_2$ rice leaf area index and plant height increased alightly in all species combinations but no increases were observed for E. Glabuescens. For rice in all combinations. elevated $CO_2$ tended to increase the rot and total biomass much more than any other growth parameters: the increases in root and total biomass resulting from elevated $CO_2$ ranged from 16% to 40%. depending on air temperature. At the lowest temperature, the decrease in rice biomass in combination with E. glabrescens was significantly greater at elevated $CO_2$ (18%) than ambient $CO_2$ (3%). At the highest temperature, however, the decrease in rice biomass at elevated $CO_2$ (22%) was less than that at ambient $CO_2$ (36%). The competitive ability of rice as measured by the decrease in biomass when grown in combination with E. glabrescens depended strongly on root growth and/or allocation. These results suggest that at higher temperatures elevated $CO_2$ could enhance the competitive ability of direct seeded rice during early growth. However, at lower temperatures. the competitive ability of E. glabrescens seems to be greater.

  • PDF

Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions (대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

Ecophysiological responses of Quercus gilva, endangered species and Q. glauca to long-term exposure to elevated CO2 concentration and temperature

  • Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2012
  • The physiological effects of elevated $CO_2$ concentration and temperature were examined for Quercus gilva and Q. glauca grown under control (ambient $CO_2$ and temperature) and treatment (elevated $CO_2$ and temperature) conditions for 39 months. The objective of the study was to measure the long-term responses, in physiological parameters, of two oaks species exposed to elevated $CO_2$ and temperature. The photosynthetic rate of Q. gilva was found to be decreased, but that of Q. glauca was not significantly affected, after long-term exposure to elevated $CO_2$ and temperature. Stomatal conductance of Q. glauca was reduced by 21.7%, but that of Q. gilva was not significantly affected, by long-term exposure to $CO_2$ and temperature. However, the transpiration rate of the two oak species decreased. Water use efficiency of Q. gilva was not significantly affected by elevated $CO_2$ and temperature, while that of Q. glauca was increased by 56.6%. The leaves of Q. gilva grown under treatment conditions had an increased C:N ratio due to their reduced nitrogen content, while those of Q. glauca were not significantly affected by long-term exposure to elevated $CO_2$ and temperature. These results suggest that the long-term responses to elevated $CO_2$ and temperature between Q. gilva and Q. glauca are different, and that Q. gilva, the endangered species, is more sensitive to elevated $CO_2$ and temperature than Q. glauca.

Effects of elevated CO2 concentration and increased temperature on the growth and crop yield of rice (Oryza sativa) cultivars in Korea -cv. Odaebyeo and cv. Saechucheongbyeo- (CO2농도와 온도 상승이 한국의 주요 재배 벼품종의 생육과 생산량에 미치는 영향 -오대벼와 새추청벼-)

  • Lee, Eung Pill;Jang, Rae Ha;Cho, Kyu Tae;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • We grew seedlings of Saechucheongbyeo and Odaebyeo of rice cultivars that are cultivated dominantly in the northern and middle regions of Korea under control(ambient condition), ambient $CO_2$ concentration+elevated temperature, and elevated $CO_2$ concentration+elevated temperature in order to study how growth responses and crop yield of major rice of Korea change as the global warming proceeds and compared the results. Aboveground biomass, belowground biomass, total biomass, and panicles weight per individual and ripended grain rate of cv. Saechucheongbyeo were the highest under control, but those of cv. Odaebyeo were the highest under elevated $CO_2$ concentration+elevated temperature. There was no difference in the number of panicles per individual of cv. Saechucheongbyeo and cv. Odaebyeo in these experiments. There was no difference in the number of grains per panicle of cv. Saechucheongbyeo among three environmental gradients, but that of cv. Odaebyeo was the highest under elevated $CO_2$ concentration+elevated temperature. Weight of a grain of cv. Saechucheongbyeo was highest under elevated $CO_2$ concentration+elevated temperature, but that of cv. Odaebyeo was the higher under ambient $CO_2$ concentration+elevated temperature and elevated $CO_2$ concentration+elevated temperature. Thus, if global warming continues in Korea, selection of rice cultivation varieties must be chosen carefully for commendation.

Effect of Elevated TEX>$CO_2$ and Temperature on Nitrogen Responses in Rice (수도의 질소반응에 미치는 고$CO_2$농도 및 온도의 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.119-123
    • /
    • 1998
  • Effects of elevated CO2 and temperature on nitrogen (N) uptake , leaf N concentration, N partitioning , N use efficiency (NUE) and grain yield of pot and field grown rice (Oryza sativa. L.cv. Chukwangbyeo) under canopy-like conditions were studied over three years. Rice plants were grown in pots and in the field in temperature gradient chambers containing either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in conbination with either four or seven temperature regimes ranging form ambient temperature(AT) to AT plus 3$^{\circ}C$. There were three N supplies 94g or 6g m-2 to 20g or 48g m-2.Elevated CO2 increased N uptake in field-grown rice ; the magnitude of this effect was thelargest (+15%) at the highest N level. However, in pot-grown rice, N uptake was suppressed with the effect was the largest at high N levels. Leaf N concentration declined at elevated CO2 mainly due to a decrease in N partitiioning to the leaf blades. Air temperature had little effect on the N parameters mentioned previously, wherease NUE for spikelet production declined rapidly with increased temperature irrespective of CO2 concentration. The response of the biomass to elevated CO2 varied with N level, with the greatest response at 20g N m-2 (+30%) . At AT, where high temperature-induced sterility was generally not observed, elevated CO2 increased yield. However, the magnitude of this effect varied greatly (2-39%) with N level, and was mainly dependent on the magnitude of the increase in spikelet number.

  • PDF

Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana) (온도와 이산화탄소의 상승처리가 포도 '캠벨얼리'의 수체생육과 과실품질에 미치는 영향)

  • Son, In Chang;Han, Jeom-Haw;Cho, Jung Gun;Kim, Seung Heui;Chang, Eun-Ha;Oh, Sung Il;Moon, Kyung-Hwan;Choi, In-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • The effects of elevated temperature and $CO_2$ concentration on vine growth and characteristics of fruits of three-year-old 'Campbell Early' grapevine were investigated. The treatment groups consisted of a control group (ambient temperature and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated temperature group (ambient temperature + $4.0^{\circ}C$ and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated $CO_2$ group (ambient temperature and $700{\mu}L{\cdot}L^{-1}\;CO_2$), and an elevated $CO_2$/temperature group (ambient temperature + $4.0^{\circ}C$ and $700{\mu}L{\cdot}L^{-1}\;CO_2$). The average shoot length was 312.6 cm in the elevated $CO_2$/temperature group, which was higher than the other groups; with 206.2 cm in the control group and 255.6 cm and 224.8 cm in the elevated temperature group and elevated $CO_2$ group respectively. However, the shoot diameter showed a tendency of decreasing in the elevated temperature and elevated $CO_2$/temperature groups. The equatorial diameter of berries was increased in the higher carbon dioxide concentration, and the soluble solid content was the highest in the elevated $CO_2$ group, with $14.6^{\circ}Brix$ among all treatment groups and the lowest in the elevated temperature group ($13.9^{\circ}Brix$). The harvest date was approximately 11 d earlier in the elevated $CO_2$/temperature group and 4 to 2 days earlier in the elevated $CO_2$ group and elevated temperature group, respectively. Regarding the rate of photosynthesis and transpiration during the growth period, higher photosynthetic rates were observed in the elevated $CO_2$ group and the elevated $CO_2$/temperature group during the early stage of growth; however the photosynthetic rate was reduced dramatically in summer, which was contrary to transpiration.

Influence of Elevated CO2 and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree (CO2 및 기온 상승이 '후지'/M.9 사과나무의 광합성, 신초생장 및 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Park, Moo-Yong;Song, Yang-Yik;Chung, Kyeong-Ho;Nam, Jong-Chul;Han, Jeom-Hwa;Do, Gyung-Ran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.245-263
    • /
    • 2013
  • This study was conducted to find out the influence of elevated atmospheric $CO_2$ concentrations and air temperature on photosynthesis and fruit quality of 'Fuji'/M.9 apple trees and to investigate these to the effects of climate change during the last four years (2009-2012). The treatments employed were: 'Ambient' (ambient temperature + ambient $CO_2$ concentration); 'High $CO_2$' (ambient temperature + elevated $CO_2$ concentration); 'High Temp'. (elevated temperature + ambient $CO_2$ concentration); and 'High $CO_2$ + High Temp'. (elevated temperature + elevated $CO_2$ concentration). The elevated temperature plots were maintained at $4^{\circ}C$ higher than ambient air temperature, while the elevated $CO_2$ plots were maintained at 700 ${\mu}mol{\cdot}mol^{-1}$. Annual treatment period was applied from end of April to beginning of November for four years. Results showed that elevated $CO_2$ decreased stomatal conductance and leaf SPAD value, but increased photosynthetic rate, intercellular $CO_2$ concentration (Ci), and starch content of mesophyll tissue. In the vegetative growth, elevated temperature increased total number of shoot and total shoot growth per tree, but elevated $CO_2$ decreased average shoot length. In the fruit quality, elevated $CO_2$ increased soluble solid content, fruit red color, and ethylene production. In conclusion, elevated $CO_2$ increased photosynthetic rate of apples during the early growth, but effect of increased photosynthetic rate due to elevated $CO_2$ was decreased during latter growth stage. Elevated temperature, on the other hand, tended to decrease photosynthetic rate of apples during the early growth, but that tended to increase during latter growth stage. Both elevated $CO_2$ and temperature tended to decrease the degree of decreased photosynthetic rate due to each factor.

Changes of Plant Biomass and Proximate Composition of Radish Exposed to Elevated Temperature and $CO_2$ Concentration (온도 및 $CO_2$ 농도 상승에 따른 무의 건물생산 및 일반 영양성분 변화)

  • Seo, Tae-Cheol;Jang, Yoon-Ah;Nam, Chun-Woo;Oh, Sang-Seok;Um, Yeong-Cheol;Han, Jeom-Hwa
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • This experiment was conducted to evaluate the long-term effect of the elevated temperature and $CO_2$ concentration on the plant biomass, C/N ratio, and proximate composition of radish. Elevated temperature by 2~2.5 higher than ambient temperature decreased plant biomass by 39% in the spring and 26% in the autumn, respectively. Elevated $CO_2$ concentration by $220{\sim}230{\mu}mol\;mol^{-1}$ higher than ambient $CO_2$ concentration increased plant biomass especially in root. The elevated $CO_2$ concentration, however, could not compensate for the negative effect of elevated temperature on the plant biomass entirely. Elevated temperature increased T/R ratio by 86% in the spring and 60% in the autumn, respectively. Elevated temperature lowered C/N ratio and raised crude protein, crude fat, and ash content in radish root. On the contrary, elevated $CO_2$ concentration raised C/N ratio and lowered the crude protein, crude fiber, and ash contents. These results indicate that climate change affect the biomass yield and internal materials of radish depending on the extent of temperature and $CO_2$ concentration rise in the future.

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.) (이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.428-434
    • /
    • 2008
  • The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.