• Title/Summary/Keyword: EL4

Search Result 1,298, Processing Time 0.023 seconds

Development of an Optimization Technique of CETOP-D Inlet Flow Factor for Reactor Core Thermal Margin Improvement (원자로심의 열적여유도 증대를 위한CETOP-D의 입구유량인자 최적화 기법 개발)

  • Hong, Sung-Deok;Lim, Jong-Seon;Yoo, Yeon-Jong;Kwon, Jung-Tack;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.562-570
    • /
    • 1995
  • The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized oater reactor-s have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(mini-mum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC mod-el using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by elim-inating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the YongGwang Units 3&4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method.

  • PDF

Growth, carcass traits, cecal microbial counts, and blood chemistry of meat-type quail fed diets supplemented with humic acid and black cumin seeds

  • Arif, Muhammad;Rehman, Abdur;Abd El-Hack, Mohamed E.;Saeed, Muhammad;Khan, Fateh;Akhtar, Muhammad;Swelum, Ayman A.;Saadeldin, Islam M.;Alowaimer, Abdullah N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1930-1938
    • /
    • 2018
  • Objective: The present study attempted to determine safe and sufficient growth promoters in poultry feeding. Methods: A total of 520 seven-day-old quail chicks were randomly allotted to eight treatment groups in a $4{\times}2$ factorial design experiment to evaluate the effect of different levels of humic acid (HA) and black cumin (BC) seed and their interactions on growth, carcass traits, gut microbes, and blood chemistry of growing quails. Quails were randomly distributed into 8 groups in a $4{\times}2$ factorial design, included 4 HA levels (0, 0.75, 1.5, and 2.25 g/kg diet) and 2 BC levels (0 or 5 g/ kg diet). Results: Increasing HA level associated with a gradual increase in final weight, feed intake and body weight gain along with an improvement in feed conversion ratio. Dietary addition of 5 g BC powder/kg diet gave similar results. The highest level of HA (2.25 g/kg diet) recorded the best values of carcass weight, breast yield, intestinal length, and intestinal weight comparing with the control and other HA levels. Total viable microbial counts decreased (p<0.05) with increasing levels of HA except the intermediate level (1.5 g/kg diet). The concentration of serum cholesterol and low density lipoprotein (excluding that 0.75 g HA) decreased (p<0.05) and high density lipoprotein increased (p = 0.034) along with increasing HA level. The interaction between the $2.25g\;HA{\times}5g$ gave the best results regarding most studied parameters. Conclusion: These findings indicated that HA combined with BC could be used as effective growth promoters, with the recommended level being 2.25 g HA+5 g BC/kg of quail diet.

Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells (괭생이 모자반 추출물의 소포체 스트레스 억제 효능)

  • Park, Sora;Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.583-595
    • /
    • 2020
  • Purpose: This study examined the effects of Sargassum horneri extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells. Methods: HepG2 cells were treated with varying concentrations of S. horneri extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of S. horneri were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1α (IRE1α), eukaryotic translation initiation factor 2 alpha submit (eIF2α), and CHOP were examined by western blot analysis. Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with S. horneri reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1α, p-elF2α, and CHOP were also reduced by a treatment with S. horneri. An analysis of sirtuin (SIRT) mRNA expression in the S. horneri and PA-treated HepG2 cells showed that S. horneri increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes. Conclusion: These data indicate that S. horneri can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Identification and Functional Analysis of Escherichia coli RNase E Mutants (Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석)

  • Shin, Eun-Kyoung;Go, Ha-Young;Kim, Young-Min;Ju, Se-Jin;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell and expression of N-terminal domain consisted of 1-498 amino acids (N-Rne) is sufficient to support normal cellular growth. By utilizing these properties of RNase E, we developed a genetic system to screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that lead to various phenotypes. Using this system, we identified three kinds of mutants. A mutant N-Rne containing amino acid substitution in the S1 domain (I6T) of the protein was not able to support survival of E. coli cells, and another mutant N-Rne with amino acid substitution at the position 488 (R488C) in the small domain enabled N-Rne to have an elevated ribonucleolytic activity, while amino acid substitution in the DNase I domain (N305D) only enabled N-Rne to support survival of E. roli cells when the mutant N-Rne was over-expressed. Analysis of copy number of ColEl-type plasmid revealed that effects of amino acid substitution on the ability of N-Rne to support cellular growth stemmed from their differential effects on the ribonucleolytic activity of N-Rne in the cell. These results imply that the genetic system developed in this study can be used to isolate mutant RNase E with various phenotypes, which would help to unveil a functional role of each subdomain of the protein in the regulation of RNA stability in E. coli.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF

Preparation and Characterisation of Titanium Dioxide Produced from Ti-salt Flocculated Sludge in Water Treatment (수처리 티탄염 응집 슬러지에서 생산한 산화티탄의 제조와 특성 조사)

  • Shon, Hokyong;Okour, Yousef;Saliby, Ibrahim El;Park, Jun;Cho, Dong-Lyun;Kim, Jong Beom;Park, Hee Ju;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2009
  • During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of $FeCl_3$ and $Al_2(SO_4)_3$ salts, commonly used coagulants. Incinerated sludge-$TiO_2$ showed higher surface area and photocatalytic activity than commercially available $TiO_2$. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped $TiO_2$ showed very high photocatalytic activity compared to Fe-doped $TiO_2$. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The $TiO_2$ generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. $TiCl_4$ coagulant and $TiO_2$ produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial $TiO_2$ when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of $TiO_2$ produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field.

Genetic and Economic Analysis for the Relationship between Udder Health and Milk Production Traits in Friesian Cows

  • El-Awady, H.G.;Oudah, E.Z.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1514-1524
    • /
    • 2011
  • A total of 4,752 monthly lactation records of Friesian cows during the period from 2000 to 2005 were used to estimate genetic parameters and to determine the effect of udder health on milk production traits. Three milk production traits were studied: 305-day milk yield (305-dMY), 305-day fat yield (305-dFY) and 305-day protein yield (305-dPY). Four udder health traits were studied: somatic cell count (SCC), mastitis (MAST), udder health status (UDHS) with 10 categories and udder quarter infection (UDQI) with 7 categories. Mixed model least square analysis was used to estimate the fixed effects of month and year of calving and parity (P) on different studied traits. Sire and dam within sire were included in the model as random effects. Data were analyzed using Multi-trait Derivative Free Restricted Maximum Likelihood methodology (MTDFREML) to estimate genetic parameters. Unadjusted means of 305-dMY, 305-dFY, 305-dPY and SCC were 3,936, 121, 90 kg and 453,000 cells/ml, respectively. Increasing SCC from 300,000 to 2,000,000 cells/ml increased UDQI from 5.51 to 23.2%. Losses in monthly and lactationally milk yields per cow ranged from 17 to 93 and from 135 to 991 kg, respectively. The corresponding losses in monthly and lactationally milk yields return per cow at the same level of SCC ranged from 29.8 to 163 and from 236 to 1,734 Egyptian pounds, respectively. Heritability estimates of 305-dMY, 305-dFY, 305-dPY, SCC, MAST, UDHS, UDQI were 0.31${\pm}$0.4, 0.33${\pm}$0.03, 0.35${\pm}$0.05, 0.23${\pm}$0.02, 0.14${\pm}$0.02, 0.13${\pm}$0.03, and 0.09${\pm}$0.01, respectively. All milk production traits showed slightly unfavorable negative phenotypic and genetic correlations with SCC, MAST, UDHS and UDQI. There were positive and high genetic correlations between SCC and each of MAST (0.85${\pm}$0.7), UDHS (0.87${\pm}$0.10) and UDQI (0.77${\pm}$0.06) and between MAST and each of UDHS (0.91${\pm}$0.11) and UDQI (0.83${\pm}$0.07). It could be concluded that the economic losses from mastitis and high SCC are considerable. The high genetic correlation between SCC and clinical mastitis (CM) suggest that the selection for lower SCC would help to reduce or eliminate the undesirable correlated responses of clinical mastitis associated with selection for increasing milk yield. Additionally, it is recommended also that if direct information on under health traits is not available, measures of SCC can be inclusion in a selection criteria to improve the income from dairy cows.

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.