

Research Article

Check for updates

괭생이 모자반 추출물의 소포체 스트레스 억제 효능

박소라 💿 ', Shalom Sara Thomas 💿 ², 차연수 💿 ², 김경아 💿 '

'충남대학교 식품영양학과 ²전북대학교 식품영양학과

Inhibitory effects of *Sargassum horneri* extract against endoplasmic reticulum stress in HepG2 cells

Sora Park (1)¹, Shalom Sara Thomas (1)², Youn-Soo Cha (1)², and Kyung-Ah Kim (1)¹

¹Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea ²Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea

ABSTRACT

Purpose: This study examined the effects of *Sargassum horneri* extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells.

Methods: HepG2 cells were treated with varying concentrations of *S. horneri* extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of *S. horneri* were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1a (IRE1a), eukaryotic translation initiation factor 2 alpha submit (eIF2a), and CHOP were examined by western blot analysis.

Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with *S. horneri* reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1 α , p-eIF2 α , and CHOP were also reduced by a treatment with *S. horneri*. An analysis of sirtuin (SIRT) mRNA expression in the *S. horneri* and PA-treated HepG2 cells showed that *S. horneri* increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes.

Conclusion: These data indicate that *S. horneri* can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

Keywords: Sargassum hornerí, palmitic acid, endoplasmic reticulum stress, sirtuin

OPEN ACCESS

Received: Oct 5, 2020 Revised: Nov 19, 2020 Accepted: Nov 20, 2020

Correspondence to Kyung-Ah Kim

Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea. Tel: +82-42-821-6832 E-mail: kakim@cnu.ac.kr

© 2020 The Korean Nutrition Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID iDs

Sora Park 厄

https://orcid.org/0000-0002-9008-3625 Shalom Sara Thomas D https://orcid.org/0000-0003-1198-3690 Youn-Soo Cha D https://orcid.org/0000-0001-5579-650X Kyung-Ah Kim D https://orcid.org/0000-0002-2611-3033

Funding

This work was supported by research fund of Chungnam National University.

Conflict of Interest

There are no financial or other issues that might lead to conflict of interest.

서론

소포체 (endoplasmic reticulum [ER])는 조면 소포체 (rough ER)와 활면 소포체 (smooth ER) 로 나누어지는데 리보솜이 있는 조면 소포체에서 전령 RNA (mRNA)의 코돈 (codon)에 따라 아미노산을 붙여 단백질로 번역 후 수정 (post-translational modification) 즉, 접힘 (folding)과 조립 (assembly), 이황화결합 (disulfide bond) 및 당화 (glycation) 등이 이루어져 활성형 단백 질을 배출시킨다 [1,2]. 또한, 최적의 단백질 접힘을 위해서 ATP, Ca²⁺ 및 이황화결합 형성을 위한 산화 환경 등 몇 가지 요인이 요구된다 [3]. 그러나, 칼슘 항상성의 이상, 미접힘 단백질 (misfolded protein)의 과다 유입, 염증반응 등 생리적 혹은 병리적 화경의 변화로 소포체 기 능에 장애가 발생하는데 이러한 상태를 소포체 스트레스 (ER stress) 라고 한다 [4-6]. 소포체 스트레스 발생 시 세포는 생존하기 위하 방어기전인 미접힘 단백질 반응 (unfolded protein response [UPR]) 신호 전달 경로를 작동시키다 [7], UPR 기전의 경로는 첫 번째로 리보솜에 서 mRNA로부터 단백질로 번역되는 것을 억제 (translational attenuation)하여 새로운 단백 질이 소포체 내로 유입되는 것을 막는다 [8]. 두 번째는 단백질을 접합시키는데 필요한 유전 자를 발현시켜 소포체의 접힘 능력을 증진시킨다 [9,10]. 세 번째 반응은 소포체에서 비정상 으로 접힘이 되거나 미접힘 단백질을 세포질 내 ubiquitin-proteasome 과정을 통해 분해하여 제거하는 소포체 스트레스 관련 분해 (ER associated protein degradation) 반응이다 [11]. 이러 한 URP 기전은 inositol-requiring enzyme-1q (IRE1q), protein kinase-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6)에 의해 매개되며 이러한 반응들에도 소 포체 스트레스가 장기간 지속되면 C/EBP homologous protein (CHOP) 단백질이 활성화되어 세포사멸 (apoptosis)의 과정이 촉진될 뿐만 아니라 [12,13], 신경퇴화성 질환, 당뇨병, 암을 포 함한 많은 질환의 발생에 연관되어 있다고 보고되었다 [14].

Palmitic acid (PA)는 혈청에 존재하는 가장 풍부한 유리지방산 (free fatty acid) 중 하나로 이전 의 연구에 따르면, 과도한 유리지방산은 지방세포 및 췌장 β세포에서 UPR과 관련된 유전자 를 상향 조절함으로써 소포체 스트레스를 유도하는 것으로 나타났다 [15,16]. 많은 선행연구 에서는 소포체 스트레스 유도를 위해 종양 promotor인 thapsigargin을 이용하였으며 [17,18] PA를 이용한 소포체 스트레스 유도 조건에서의 연구는 미비한 실정이다.

해조류는 다량의 무기질을 함유하고 다당류의 함량이 높아 천연자원으로 각광받고 있으며, 특히 갈조류의 경우 항암, 항염증 및 항산화 등 생리활성 물질이 풍부한 것으로 알려져 있다 [19,20]. 갈조 모자반 속 식물인 괭생이 모자반 (*Sargassum horneri*)은 주로 중국과 일본 및 우리 나라 동해안과 남해안에 분포하고 일본의 경우 오래 전부터 식용으로 이용되고 있는 것으로 보고되며 우리나라에서는 사료 및 거름으로 활용하지만 지난 몇 년 동안 해안으로 밀려와 쌓 여 주변 수산업에 영향을 주고 악취를 풍겨 상품성이 떨어진다고 인식되고 있었다 [21]. 괭생 이 모자반에 대한 이전 연구를 살펴보면 수세기 동안 전통 의학에서 음식과 약물의 근원으로 사용되었으며, 풍부한 아미노산, 비타민 및 다당류로 구성되고 항염증, 항바이러스, 항산화, 항암 작용과 같은 다양한 생리 활성을 가지고 있다고 보고되어 있다 [22,23]. 그러나 괭생이 모자반 추출물의 소포체 스트레스 억제 효과 및 기전에 대한 연구는 미비한 실정이므로 본 연구에서는 HepG2 세포에서 PA로 유도된 소포체 스트레스 조건 시 괭생이 모자반 추출물의 처리가 소포체 스트레스에 미치는 영향을 확인하였다.

연구방법

Bovine serum albumin (BSA)를 이용한 BSA-PA conjugate의 제조

본 실험에 사용된 PA은 sodium palmitate (Sigma-Aldrich, St. Louis, MO, USA)를 BSA (raction V-fatty acid free; MERCK, Billerica, MA, USA)로 녹여 사용하였다. Sodium palmitate와 BSA는 Seahorse Bioscience (North Billerica, MA, USA)의 protocol에 따라 6:1 (molecular ratio)의 비율 로 제조하였다.

괭생이 모자반 추출물의 제조

본 실험에 사용에 사용한 괭생이 모자반 열수추출물은 한국프라임제약㈜에서 제공한 시료 를 사용하였다. 제조 과정은 전라남도 완도 일대에서 수거한 후 정수를 이용하여 침지 세척 및 자숙의 탈염과정을 거친 후 건조하여 수분함량이 10% 이하로 1차 가공된 괭생이 모자반 원물을 100 mm 수준으로 분쇄한 다음 시료 1 kg에 원물대비 30배에 상당한 정제수를 30 L를 가하여 온도 90℃에서 4시간 동안 추출하였다. 추출물은 55 µm의 백필터 (bag filter) 여과 후 원심박막농축기 (Evaporator, CEP-LABO; Okawahara Kakohki, Yokohama, Japan)를 이용하여 고형분 함량 20% brix가 되도록 농축하였고, 분무건조 (spray dryer, HKC-100-DJ; Niro, Copenhagen, Denmark)한 것을 괭생이 모자반 추출물로 사용하였다 [24].

세포주 및 세포배양

인간 간암 세포주 HepG2 세포 (ATCC-HB-8065; ATCC, Manassas, VA, USA)의 배양액은 10% fetal bovine serum (Gibco, Invitrogen, Grand Island, NY, USA)과 1% penicillin-streptomycin (Gibco, Grand Island, NY, USA)을 첨가한 Dulbecco's modified Eagle medium (4.5g/L glucose; Gibco BRL, Grand Island, NY, USA)을 사용하였으며, 세포 배양은 37°C, 5% CO₂ 조건의 배양기 (BB15; Thermo Fisher Scientific Inc., Waltham, MA, USA)에서 실시하였다.

세포 독성 측정

괭생이 모자반 추출물과 PA가 HepG2 세포에 미치는 독성을 알아보기 위해 water soluble tetrazolium salts (WST)를 사용하여 cell viability를 측정하였다. 96 well plate에 HepG2 세포를 1×10⁴ cells/mL의 농도로 100 μL씩 분주하여 24시간 동안 배양한 후 농도별 추출물 (6.25, 12.5, 25, 50, 100, 200, 400, 800 μg/mL), PA (100, 250, 500, 750, 1,000 μM)을 처리하여 24시간 배양하였다. 배 양 후 EZ-Cytox WST assay reagent (Dogenbio Co., Ltd., Seoul, Korea)를 10 μL씩 첨가한 후, 2시간 뒤에 ELISA reader (microplate absorbance spectrophotometer; Bio-Rad Laboratories, Inc., Hercules, CA, USA)를 이용하여 450 nm에서 흡광도를 측정하였다. 괭생이 모자반 추출물과 PA가 처 리된 세포 생존율은 대조군 (control)의 세포 생존율 대비 백분율 (%)로 나타내었다.

Western blot analysis

HepG2 세포를 1×10⁶ cell/mL 농도로 6 well plate에 분주하고 24시간 동안 배양한 후 PA 750 μM을 시간대별로 (1, 4, 8, 12, 24시간) 처리하여 배양 시간을 정한 후 농도별 괭생이 모자반 열수추출 물 (10, 50, 100 μg/mL)과 PA 750 μM를 처리하여 12시간 배양하였다. 배양이 끝난 HepG2 세포를 cold-PBS (phosphate buffered saline; iNtRON Biotechnology Inc., Seongnam, Korea)로 1회 세척한 후, protease inhibitor (Roche, Mannheim, Germany)와 phosphatase inhibitor (Roche)가 포함된 lysis buffer (Thermo Scientific, Rockford, IL, USA)를 가하여 lysis 시킨 후 15,000 rpm에서 15분간

원심분리를 하여 단백질을 추출하였다. Bradford reagent (Sigma-Aldrich)를 사용하여 단백질 의 농도를 정량하고 lysate에 5 × sample buffer (Elpisbiotech Inc., Daejeon, Korea)를 넣고 95°C에 서 5분간 불활성화 시켰다. Well당 단백질 30 µg을 10%-12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis로 분리한 뒤, 분리된 단백질은 270 mA에서 polyvinylidene difluoride membrane에 1시간 30분 동안 transfer하고 membrane에서 antibody 비특이적 결합 방지를 위해 5% skim milk에서 1시간 동안 blocking하였다. Phosphate (p)-IRE1a, IRE1a, p-eukaryotic translation initiation factor 2 alpha submit (eIF2a), eIF2a, CHOP, β-actin의 발현량을 측정하기 위해 1 차 항체로는 anti-rabbit p-IRE1a, p-eIF2a, anti-mouse CHOP, β-actin (Cell Signaling Technology Inc., Beverly, MA, USA)를 사용하였고 1:1,000의 비율로 희석하여 4°C에서 overnight시키고, tris buffered saline Tween-20 (TBS-T)로 5분씩 3회 세척하였다. 2차 항체로 horseradish peroxidase 가 결합된 anti-rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-mouse IgG (Santa Cruz Biotechnology)를 각각 1:10,000, 1:2,000의 비율로 희석하여 상온에서 1시간 반응시킨 후 TBS-T로 5분씩 3회 세척하였다. 이후 Ezwestlumi-plus (ATTO Co., Tokyo, Japan)를 처리하고 Chemiluminescent Imaging System (LuminoGraphII, ATTO Co.)을 이용하여 결과를 확인하였고, band intensity의 정량화는 CS Analyzer 4 (ATTO Co.)를 이용하였다.

Total RNA 추출 및 cDNA 합성

팽생이 모자반 열수 농도별 추출물 (10, 50, 100 μg/mL)에 PA 750 μM를 처리하여 12시간 배양한 6 well plate는 Higene[™] Total RNA Prep kit (BioFACT Co., Daejeon, Korea)를 이용하여 제시된 방 법대로 total RNA를 추출하였다. 추출한 RNA는 NanoDrop (NanoDrop ONE, Thermo Fisher Scientific Inc.)을 이용하여 정량하였다. cDNA 합성은 RT-Kit (BioFACT Co.)을 이용하였으며, 역전 사에 의한 cDNA synthesis는 50°C에서 30분간, RTase inactivation은 95°C에서 5분간 반응시켰다.

Quantitative reverse transcription polymerase chain reaction

HepG2 세포의 ATF4, CHOP, 78-kDa glucose-regulated protein (GRP78), X-box binding protein (XBP1s), SIRT mRNA의 발현 정도의 측정은 7,500 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA)에서 진행하였다. 실험에 사용한 primer sequence는 **Table 1**과 같다.

Table 1. Reverse transcription polymerase chain reaction primer sequences

Gene	Primer	Sequence $(5' \rightarrow 3')$
ATF4	Forward	5'-GAG GTG GCC AAG CAC TTC AA-3'
	Reverse	5'-GCC CGC CTT AGC CTT GTC-3'
СНОР	Forward	5'-CTC TGA TTG ACC GAA TGG TGA A-3'
	Reverse	5'-GGG ACT GAT GCT CCC AAT TG-3'
XBP1s	Forward	5'-AAC CAG GAG TTA AGA CAG CGC TT-3'
	Reverse	5'-CTG CAC CCT CTG CGG ACT-3'
GRP78	Forward	5'-TGG CGG AAC CTT CGA TGT-3'
	Reverse	5'-CGG ACA ACT TCG AAG ACA CCA T-3'
SIRT1	Forward	5'-TAG CCT TGT CAG ATA AGG AAG GA-3'
	Reverse	5'-ACA GCT TCA CAG TCA ACT TTG T-3'
SIRT2	Forward	5'-CCG GCC TCT ATG ACA ACC TA-3'
	Reverse	5'-GGA GTA GCC CCT TGT CCT TC-3'
SIRT6	Forward	5'-CCA AGT TCG ACA CCA CCT TT-3'
	Reverse	5'-CGG ACG TAC TGC GTC TTA CA-3'
SIRT7	Forward	5'-GTG GAC CCG AAG GAT GAC T-3'
	Reverse	5'-TGC ACA GCG ACT TCC GAC T-3'
GAPDH	Forward	5'-ATG GAA ATC CCA TCA CCA TT-3'
	Reverse	5'-CGC CCC ACT TGA TTT TGG-3'

ATF4, activating transcription factor 4; CHOP, C/EBP homologous protein; XBP1s, spliced X-box binding protein; GRP78, 78-kDa glucose-regulated protein; SIRT, sirtuin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

통계처리

실험 결과의 통계처리는 SPSS program (Statistical Package for Social Sciences, ver. 24; IBM Corporation, New York, NY, USA)을 이용하여 분석하였고 평균 ± 표준편차 (mean ± SD)로 나타 내었다. 각 군 간의 평균값에 대한 유의성은 신뢰수준 95% (p < 0.05)에서 one-way analysis of variance test를 실시하고 유의한 차이를 검증한 후 사후분석으로 Duncan's multiple range test 를 사용하여 검증하였다.

결과

세포 생존율

· 팽생이 모자반 추출물과 PA의 세포 생존율을 알아보기 위해 HepG2 세포에 각각 6.25-800 μg/ mL과 50-1,000 μM의 농도로 24시간 배양한 결과, 팽생이 모자반 추출물 800 μg/mL 농도에 서 세포 생존율이 감소하고 (**Fig. 1A**), PA의 경우 1000 μM 농도일 때 세포 생존율이 감소하는 것으로 나타났다 (**Fig. 1B**). 따라서 이후 실험에는 팽생이 모자반 추출물 처리 시 세포 생존율 에 영향을 주지 않는 100 μg/mL 이하를 사용하였고 PA 처리 시 750 μM 이하를 사용하였다.

PA를 농도별로 처리한 HepG2 세포의 소포체 스트레스 유도

비만 관련 지방 간 질환, 바이러스성 간염 및 알코올 유발 간 손상을 포함한 지질과 관련된 간 질환 시 UPR 활성화가 발생한다 [25]. PA를 HepG2 세포에 농도별로 처리했을 때 UPR 관련 인 자의 단백질 발현이 변화하는지 확인하기 위하여 Western blot을 수행하였다. p-IRE1a 발현 은 BSA 단독 처리군에 비해 PA 처리 후 농도 의존적으로 증가하는 경향을 보였고 p-eIF2a 발 현은 PA 처리 시 농도 의존적으로 유의한 차이를 보였으며 750 µM 농도에서 가장 높은 발현 을 보였다. CHOP 발현에서도 750 µM 농도에서 가장 높은 발현을 나타냈다 (**Fig. 2**). 따라서 본 실험에서는 소포체 스트레스에 대한 괭생이 모자반 추출물의 효과를 결정하기 위한 농도로 PA 750 µM 농도가 선택되었다.

Fig. 1. Effect of (A) SHE and (B) PA on the HepG2 cell viability. Values are expressed as mean \pm SD. Values with different letters indicate significance between groups by analysis of variance with Duncan's multiple range test at p < 0.05. CON, control; SHE, *Sargassum horneri*; BSA, bovine serum albumin; PA, palmitic acid.

Fig. 2. Endoplasmic reticulum stress markers on treatment with different concentrations of PA in HepG2 cells; (A) protein expression and (B-D) fold change. Values are expressed as mean \pm SD. Values with different letters indicate significance between groups by analysis of variance with Duncan's multiple range test at p < 0.05. PA, palmitic acid; BSA, bovine serum albumin; p-IRE1 α , phosphate-inositol-requiring enzyme-1 α ; IRE1 α , inositol-requiring enzyme-1 α ; p-eIF2 α , phosphate-eukaryotic translation initiation factor 2 alpha submit; eIF2 α , eukaryotic translation initiation factor 2 alpha submit; CHOP, C/EBP homologous protein.

PA를 시간별로 처리한 HepG2 세포의 소포체 스트레스 유도

PA를 HepG2 세포에 시간별로 처리하였을 때 UPR 관련 인자의 단백질 발현 변화를 분석하기 위해 Western blot을 수행한 결과 p-IRE1α 발현은 PA를 4시간 처리하였을 때부터 증가하는 경 향을 보이며 12시간 처리 시 유의하게 가장 높은 발현을 나타냈다 (Fig. 3). p-eIF2α 발현도 12 시간 처리 시 가장 높은 발현을 보였고 CHOP 발현은 p-IRE1α 발현과 비슷한 경향을 보이며 12 시간 처리 시 가장 높은 발현의 경향을 보였다. 이러한 결과로 미루어 UPR 관련 인자가 PA 24 시간 처리 후에도 BSA 단독 처리군보다 증가하였지만 12시간 처리 후 더 증가하는 경향을 보 였으므로 이후 실험은 HepG2 세포에 PA를 12시간 처리하여 수행하였다.

괭생이 모자반이 HepG2 세포에서 PA로 유도된 소포체 스트레스에 미치는 영향

괭생이 모자반 추출물이 소포체 스트레스에 미치는 영향을 알아보기 위해 UPR 관련 인자의 mRNA 발현을 측정한 결과, 괭생이 모자반 추출물 처리 시 농도에 관계없이 PA 단독 처리군 보다 ATF4 및 GRP78의 mRNA 발현을 현저하게 감소하였다 (Fig. 4A). XBP1s mRNA 발현은 PA 단독 처리군보다 괭생이 모자반 추출물 처리 시 농도 의존적으로 감소하는 경향을 보이며 50 과 100 μg/mL 농도에서 유의성있게 감소하였다. 또한, CHOP mRNA 발현도 괭생이 모자반 추 출물 처리 시 농도 의존적으로 감소하는 경향을 보였으며 PA 단독 처리군에 비해 괭생이 모 자반 추출물의 모든 농도에서 유의한 차이를 보였다. UPR 관련 인자의 단백질 발현을 측정한 결과, p-IRE1α 발현은 PA 단독 처리군에 비해 괭생이 모자반 추출물 처리 시 농도 의존적으로

Fig. 3. Measurement of the ER stress markers in HepG2 cell (A) protein expression and (B-D) folding with 1, 4, 8, 12 and 24 hours of PA treatment. Values are expressed as mean ± SD. Values with different letters indicate significance between groups by analysis of variance with Duncan's multiple range test at p < 0.05. PA, palmitic acid; BSA, bovine serum albumin; p-IRE1α, phosphate-inositol-requiring enzyme-1α; IRE1α, inositol-requiring enzyme-1α; p-eIF2α, phosphate-eukaryotic translation initiation factor 2 alpha submit; eIF2α, eukaryotic translation initiation factor 2 alpha submit; CHOP, C/EBP homologous protein.

감소하는 경향을 보였으며 100 μg/mL 농도에서 유의하게 감소하였다 (**Fig. 4B**). p-eIF2α 발현 도 PA 단독 처리군과 비교하였을 때 100 μg/mL 농도에서 유의하게 감소하였다. CHOP 단백질 발현은 mRNA 발현과 유사하게 PA 단독 처리군과 비교 시 괭생이 모자반 추출물의 모든 농도 에서 유의한 차이를 보였다.

Sirtuin (SIRT)의 mRNA 발현에 대한 괭생이 모자반의 효과

SIRT은 포유류에서 7종 (SIRTI-SIRT7)으로 구성되어, 다양한 신진대사 및 종양 억제와 관련 이 있으며 노화 과정 조절에 중요한 역할을 하는 것으로 알려졌다 [26,27]. 많은 선행 연구 결 과에서 SIRT이 소포체 스트레스와 직접적으로 관련이 있다고 보고되었으므로 따라서 본 연 구에서는 괭생이 모자반 추출물의 소포체 스트레스 억제 효과의 분자적 기전을 알아보기 위 하여 SIRT의 mRNA 발현을 측정하였다. Fig. 5에서 보듯이 SIRT1의 발현은 PA 및 괭생이 모자 반 추출물 처리에도 변화가 없었다. 그러나 SIRT2, 6, 7 발현은 유의적 차이는 없었으나 PA 단 독 처리 시 감소되는 경향을 보였고 괭생이 모자반 추출물과 동반 처리 시 100 μg/mL 농도에 서 유의성 있게 증가하였다.

Fig. 4. Effect of SHE on PA induced endoplasmic reticulum stress marker genes in HepG2 cells (A) mRNA expression and (B) protein expression and fold change. Values are expressed as mean ± SD. Values with different letters indicate significance between groups by analysis of variance with Duncan's multiple range test at p < 0.05. PA, palmitic acid; BSA, bovine serum albumin; SHE, *Sargassum horneri*; p-IRE1α, phosphate-inositol-requiring enzyme-1α; preIF2α, phosphate-eukaryotic translation initiation factor 2 alpha submit; eIF2α, eukaryotic translation initiation factor 2 alpha submit; eIF2α, eukaryotic translation initiation factor 2 alpha submit; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

Fig. 5. Effect of SHE extracts on the mRNA expression of SIRT in HepG2 cells. Values are expressed as mean ± SD. Values with different letters indicate significance between groups by analysis of variance with Duncan's multiple range test at p < 0.05.

PA, palmitic acid; BSA, bovine serum albumin; SHE, *Sargassum horneri*; SIRT, sirtuin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

고찰

최근 만성적인 소포체 스트레스 상태가 퇴행성 신경질환, 암, 대사질환, 염증성 질환 등의 주 요 병리기전과 관련이 있다는 연구가 보고되고 있으며 따라서 소포체 스트레스의 신호전달 기작인 미접힘 단백질 반응의 조절을 타겟으로 하는 치료 방법 개발 시도가 다양하게 이뤄지 고 있다 [14]. 따라서 본 연구에서는 소포체 스트레스 관련 질병의 예방 및 치료 소재로서 활 용가능성을 알아보고자 HepG2 세포에서 PA로 유도된 소포체 스트레스에 대한 팽생이 모자 반 추출물의 효과를 분석하였다.

소포체 스트레스의 효과적인 유도를 위한 PA의 농도를 결정하기 위해 PA를 농도별로 처리 하였을 때 PA 750 μM 농도에서 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가 장 높게 나타났다. Thomas 등 [28]의 연구에 따르면 p-IRE1α 및 p-eIF2α의 발현은 본 연구와 유사하게 PA 500 및 750 μM 농도로 처리한 후 유의하게 증가하였고 CHOP 발현 수준도 증가 하였다. 본 연구에서 PA 750 μM을 시간별로 처리하였을 때 12시간 처리 시 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가장 높게 나타났고 Kwak 등 [29]의 연구에서도 PA 750 μM 농도를 12시간 처리 시 BSA 단독 처리군과 비교하였을 때 UPR 관련 인자 (ATF6, GRP78, CHOP)의 mRNA 발현이 증가한 것으로 보고되었다.

소포체 스트레스를 조절하는 3가지 경로 (PERK, IRE1α, ATF6)가 있으며 소포체 스트레스 발 생 시 제일 먼저 PERK 활성화에 의해 eIF2α 를 인산화 시켜 mRNA에서 단백질 번역 (translation)이 감소됨에 따라 단백질 합성이 억제되고 소포체 내로 새로운 단백질 유입을 차단시킨 다 [30]. 또한, 인산화된 eIF2α는 ATF4 mRNA에서 단백질 번역을 증가시켜 소포체 스트레스 를 완화한다 [31]. ATF4는 CHOP 및 growth arrest and DNA damage-inducible 34 (GADD34)를 활성화시키며 CHOP는 세포 사멸을 조절하고 GADD34는 eIF2α의 탈인산화하는 유전자를 활 성화시킨다 [32]. 본 연구에서는 괭생이 모자반 추출물 처리 시 ATF4 및 CHOP의 mRNA 발현 을 감소시켰으며 이는 PA로 유도된 소포체 스트레스를 억제할 수 있음을 나타낸다. 또한 단 백질 발현 분석에서 괭생이 모자반 추출물 처리 시 p-eIF2α 및 CHOP의 발현이 감소됨을 보 여주었다.

IRE1α는 소포체 스트레스 발생 시 GRP78과 결합이 해리가 되고 자기 인산화된 IRE1α는 XBP1 mRNA를 잘라 활성적이고 안정적인 전사 인자 형태인 XBP1 spliced 형태 (XBP1_s)로 변환시킨 다 [33]. XBP1은 소포체 스트레스를 완화시키는 단백질 접힘과 분비, 소포체로의 지질 합성 및 단백질 이동을 조절하는 인자의 활성화를 돕는다 [34]. 본 연구 결과, 괭생이 모자반 추출 물 처리 시 XBP1_s mRNA 발현을 감소시키고 p-IRE1α 단백질 발현도 감소시킴으로써 괭생이 모자반이 PA로 유도된 소포체 스트레스를 감소시킨다는 것을 보여주었다.

ATF6는 소포체 스트레스 발생 시 단백질 접힘과 관련된 유전자를 조절하는 소포체 결합 전사 인자이며 GRP78 유전자의 전사를 활성화시킨다 [35-37]. 본 연구에서 괭생이 모자반 추출물 처리 시 GRP78의 mRNA 발현이 감소됨을 확인하였다. 따라서 괭생이 모자반 추출물의 처리 는 PA로 유도된 소포체 스트레스를 mRNA 및 단백질 발현 감소를 통해 소포체 스트레스 억제 효능을 나타내는 것으로 사료된다.

SIRT는 간, 신장 등 신체의 조직에서 만들어지는 단백질 탈아세틸화효소 (protein deacetylase)로, 복제 수명을 연장시키는 역할을 하는 효모에서 Sir2 단백질로 처음 발견되었으며 촉 매 활성을 위해 NAD[•]를 필요로 한다 [38]. SIRT1은 HepG2 세포에서 palmitate로 유도된 소포 체 스트레스 및 인슐린 저항성을 약화시키고 고지혈증 관련 인슐린 저항성 치료에 효과적이 라고 알려져 있으며 [39], SIRT2의 억제는 소포체 스트레스 유발하고 ATF4와 CHOP를 상향 조절하는 것으로 보고되었다 [40]. 또한 SIRT6는 소포체 스트레스에 대해 보호 역할을 하며 [41], SIRT7의 증가는 소포체 스트레스 관련 인자인 CHOP, XBP1 및 GRP78의 발현을 감소시키 는 것으로 알려져 있다 [38]. 본 연구에서는 괭생이 모자반 추출물의 소포체 스트레스 억제 효 과의 분자적 기전을 분석하기 위해 SIRT의 mRNA를 발현을 측정한 결과 괭생이 모자반 추출 물 처리 후 SIRT1의 mRNA 발현은 PA 단독 처리군과 비교 시 유의한 차이는 없었지만 SIRT2, SIRT6 및 SIRT7의 발현은 PA 단독 처리 시 감소되었다가 괭생이 모자반 추출물 처리 후 100 µg/mL 농도에서 유의하게 증가하였다. 따라서 괭생이 모자반 추출물의 미접힘 단백질 발현 조절을 통한 소포체 스트레스 억제효능은 이러한 SIRT의 발현 증가를 통하여 이루어지는 것 으로 사료된다.

팽생이 모자반 추출물에 대한 선행연구를 살펴보면 괭생이 모자반 추출물의 항산화, 항염 효능 및 헤르페스 바이러스 복제에 대한 억제효과가 보고되었으며 [22,23], 본 연구실에서도 RWA264.7 대식세포와 마우스를 이용한 동물 모델에서 괭생이 모자반 열수추출물의 면역활 성증진 가능성을 보고하였다 [24]. 그러나 괭생이 모자반 추출물의 미접힘 단백질 발현 조절 효능에 대한 연구는 현재까지 보고된 바가 없으며 본 연구에서 괭생이 모자반 열수추출물의 소포체 스트레스 억제 효능을 관찰하였다. 향후 괭생이 모자반 열수추출물의 소포체 스트레

스 억제 활성이 추출물 내 어떠한 성분에 의한 것인지 규명하기 위한 추가적인 성분분석 연 구가 필요할 것으로 사료된다.

요약

본 연구에서는 괭생이 모자반 추출물의 소포체 스트레스 억제 효능을 연구하기 위하여 HepG2 간세포에 PA를 처리하여 소포체 스트레스를 유발한 후 추출물을 처리하여 UPR 관 련 인자 발현 정도를 측정하였다. PA 750 µM 처리 시 UPR 관련 인자 (p-IRE1a, p-eIF2a, CHOP) 의 단백질 발현이 가장 높게 나타나 소포체 스트레스를 효과적으로 유도함을 확인하였고 PA 750 µM를 12시간 처리 시 UPR 관련 인자 (p-IRE1a, p-eIF2a, CHOP)의 단백질 발현이 가장 높 음을 확인하였다. 괭생이 모자반 처리 시 PA에 의해 상향 조절된 UPR 관련 인자의 mRNA 및 단백질 발현이 감소하여 PA로 유도된 소포체 스트레스에 대한 억제 효능이 있음을 보여주었 다. 또한, 괭생이 모자반은 SIRT2, SIRT6 및 SIRT7의 mRNA의 발현을 증가시킴으로써 괭생이 모자반의 소포체 스트레스 억제 효능이 SIRT에 의한 것으로 확인되었다. 이러한 결과는 괭 생이 모자반이 다양한 소포체 스트레스 관련 질병의 예방과 치료에 활용가능성이 있음을 시 사한다.

REFERENCES

- Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999; 13(10): 1211-1233.
 PUBMED | CROSSREF
- 2. Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74(1): 739-789.

PUBMED | CROSSREF

- Gaut JR, Hendershot LM. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 1993; 5(4): 589-595.
 PUBMED | CROSSREF
- Kaufman RJ, Scheuner D, Schröder M, Shen X, Lee K, Liu CY, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002; 3(6): 411-421.
 PUBMED | CROSSREF
- 5. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101(5): 451-454. PUBMED | CROSSREF
- Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis 2002; 7(4): 335-345.
 PUBMED | CROSSREF
- Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40(3): 141-148.
 PUBMED | CROSSREF
- Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 2002; 18: 575-599.
 PUBMED | CROSSREF
- Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332(6163): 462-464.
 PUBMED | CROSSREF
- Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273(50): 33741-33749.
 PUBMED | CROSSREF

- Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101(3): 249-258.
 PUBMED | CROSSREF
- 12. Cao SS, Kaufman RJ. Unfolded protein response. Curr Biol 2012; 22(16): R622-R626. PUBMED | CROSSREF
- Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008; 29(1): 42-61.
 PUBMED | CROSSREF
- 14. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110(10): 1389-1398.

```
PUBMED | CROSSREF
```

- Guo W, Wong S, Xie W, Lei T, Luo Z. Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 2007; 293(2): E576-E586.
 PUBMED | CROSSREF
- Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006; 147(7): 3398-3407.
- Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2dependent mitophagy. Autophagy 2014; 10(10): 1801-1813.
- Li L, Hu GK. Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep 2015; 35(1): e00174.
- Brown ES, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev 2014; 72(3): 205-216.
 PUBMED | CROSSREF
- Cho BO, Ryu HW, So YK, Jin CH, Byun MW, Kim WG, et al. Ishige sinicola extracts induce apoptosis via activation of a caspase cascade in human hela cells. J Korean Soc Food Sci Nutr 2012; 41(7): 901-906. CROSSREF
- 21. Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr 2001; 10 Suppl: S40-S47. PUBMED | CROSSREF
- Shao P, Chen X, Sun P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym 2014; 105: 260-269.
 PUBMED | CROSSREF
- Sanjeewa KK, Fernando IP, Kim EA, Ahn G, Jee Y, Jeon YJ. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr Res Pract 2017; 11(1): 3-10.
 PUBMED | CROSSREF
- Kim DS, Sung NY, Park SY, Kim G, Eom J, Yoo JG, et al. Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages. J Nutr Health 2018; 51(6): 507-514.
- 25. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol 2011; 54(4): 795-809. PUBMED | CROSSREF
- Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet 2014; 30(7): 271-286.
 PUBMED | CROSSREF
- Yao Y, Yang Y, Zhu WG. Sirtuins: nodes connecting aging, metabolism and tumorigenesis. Curr Pharm Des 2014; 20(11): 1614-1624.

 Thomas SS, Park S, Cha YS, Kim KA. Emodin exerts protective effect against palmitic acid-induced endoplasmic reticulum stress in HepG2 cells. J Nutr Health 2019; 52(2): 176-184.
 CROSSREF

 Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell Signal 2016; 28(8): 788-797.
 PUBMED | CROSSREF

https://e-jnh.org

PUBMED | CROSSREF

- 30. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7(6): 1153-1163.
 PUBMED | CROSSREF
- Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002; 277(21): 18728-18735.
 PUBMED | CROSSREF
- 32. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833(12): 3460-3470. PUBMED | CROSSREF
- Back SH, Schröder M, Lee K, Zhang K, Kaufman RJ. ER stress signaling by regulated splicing: IRE1/ HAC1/XBP1. Methods 2005; 35(4): 395-416.
 PUBMED | CROSSREF
- 34. Ma A. Unresolved ER stress inflames the intestine. Cell 2008; 134(5): 724-725. PUBMED | CROSSREF
- 35. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 2002; 277(15): 13045-13052.
 PUBMED | CROSSREF
- Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10(11): 3787-3799.
 PUBMED | CROSSREF
- 37. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 2000; 275(35): 27013-27020.
 PUBMED
- Kiran S, Anwar T, Kiran M, Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin! Cell Signal 2015; 27(3): 673-682.
 PUBMED | CROSSREF
- Jung TW, Lee KT, Lee MW, Ka KH. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Biochem Biophys Res Commun 2012; 422(2): 229-232.
 PUBMED | CROSSREF
- Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S, et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 2012; 16(7): 1618-1628.
 PUBMED | CROSSREF
- Bang IH, Kwon OK, Hao L, Park D, Chung MJ, Oh BC, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med 2019; 51(9): 1-11.
 PUBMED | CROSSREF