• 제목/요약/키워드: EIS-N

검색결과 47건 처리시간 0.029초

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

  • Shabani-Shayeh, Javad;Ehsani, Ali;Jafarian, Majid
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.179-186
    • /
    • 2014
  • Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.

MOCVD법으로 제조된 알루미나 박막의 특성 (Characteristics of Alumina Film Prepared by MOCVD)

  • 최두진;임공진;정형진;송한상;김창은
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.790-798
    • /
    • 1990
  • Al2O3 film was chemically deposited by pyrolytic decom,positio of the Al-tri-isopropoxide/N2 system at 350$^{\circ}C$, 30 and 1.86torr. FTIR analysis showed a deposited film was a hydrated alumina and transformed to an anhydrous one after heat treatment(1hr, >800$^{\circ}C$ or 4hr, >500$^{\circ}C$) in N2 atmosphere. This transformation influenced on the CV-hysteresis of Si-Al2O3 structure. Also, a pH sensitivity of EIS(Electrolyte-Insulator-Semiconductor)structure using Si-Al2O3/SiO2 film was 50mV/pH in the range of pH 3 to 7.

  • PDF

우리나라 산업장 근로자의 유기용제 폭로에 관한 연구 (A Study on Worker Exposure to Organic Solvents in Korea)

  • 백남원;이영환;윤충식
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.88-94
    • /
    • 1998
  • Korea has been rapidly industrialized during the past 35 years. During this period, Korea has emphasized only production and workers health has been ignored. Workers are most frequently exposed to organic vapors, such as thinners. This study was performed to evaluate worker exposures to organic solvents by size and type of industry. Results are summarized below. Workers were exposed to mixtures of toluene, xylenes, trichloroethylene, n-hexane, acetone, methanol, n-butanol, n-butyl acetate, and MIBK. Considering additive effects of the compounds, exposure indices (EIs) were calculated. It was found that worker exposures to organic solvents were highest in small industries and lowest in large industries. During a day shift, the highest exposure was indicated 3 - 5 p.m. in the afternoon. Workers in small industries had potential exposures exceeding permissible exposure limits for organic solvents. Local exhuast systems were inappropriate and respiratory protective devices were not supplied to the workers in small industries. Neither program for safe use and storage of toxic materials nor program for respirators was found in any of the plants investigated. Based on the results of the study, workers of small scale industries should be considered first in industrial health.

  • PDF

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권1호
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

The electrochemical properties of PVD-grown WC-( $Ti_{1-x}$A $I_{x}$)N multiplayer films in a 3.5% NaCl solution

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.435-444
    • /
    • 2001
  • WC-( $Ti_{1-x}$ A $l_{x}$) N coatings of constant changing Al concentration were deposited on S45C substrates by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (i.e, WC- $Ti_{0.86}$A $l_{0.14}$N, WC- $Ti_{0.72}$A $l_{0.28}$N, and WC- $Ti_{0.58}$A $l_{0.42}$N). The corrosion behavior of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings in a deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. The measured galvanic corrosion currents between coating and substrate indicated that WC- $Ti_{0.72}$A $l_{0.28}$N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that the WC- $Ti_{0.72}$A $l_{0.28}$N coating deposited with 32W/c $m^2$ of Al target revealed higher corrosion resistance. This indicated that the WC- $Ti_{0.72}$A $l_{0.28}$N coating is effective in improving corrosion resistance. In EIS, the WC- $Ti_{0.72}$A $l_{0.28}$N coating showed one time constant loop and increased a polarization resistance of coating ( $R_{coat}$) relative to other samples. Compositional variations of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings were analyzed by EDS and XRD analysis was performed to evaluate the crystal structure and compounds formation behavior. Surface morphologies of the films were observed using SEM and AFM. Scratch test was performed to measure film adhesion strength.strength. adhesion strength.strength.

  • PDF

화학적 부동태 처리에 따른 듀플렉스 스테인리스 강의 피막 특성에 관한 연구 (Study on Passive Layer Characteristics of Chemically Passivated Duplex Stainless Steel)

  • 장휘운;이정훈;김용환;정원섭
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.219-225
    • /
    • 2012
  • The aim of the present study was to investigate the corrosion resistance and characteristics of passive layer between naturally passivated and chemically passivated duplex stainless steel, UNS S31803 (EN 1.4462) using CPT, XPS, and EIS. The treatment of $HNO_3$(II) and $HNO_3$(III) in ASTM A 967 was applied. In case of chemically passivated specimen, CPT of $HNO_3$(II) and $HNO_3$(III) were higher than that of naturally passivated specimen. In addition, from XPS results, the protectiveness index (Cr/(Fe+Cr)) of chemically passivated specimens was also higher than that of naturally passivated specimen. The reason for this result is considered due to post-cleaning treatment in chemical passivation process, that is, immersion in $Na_2Cr_3O_7$ solution. The fact that $HNO_3$(II) passivation treatment showed the highest film resistance and 'n', which is exponent related with constant phase element (CPE) of passivation film, was in good agreement with results of CPS and XPS. The chemical passivation treatment was an effective method to improve corrosion resistance of duplex stainless steel.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide

  • Yang, Chunhai;Xie, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1729-1734
    • /
    • 2007
  • The electrochemical behaviors of estrone in the presence of various surfactants were examined with great details. It is found that a cationic surfactant, cetyltrimethylammonium bromide (CTAB), obviously facilitates the electro-oxidation of estrone at carbon paste electrode (CPE) from the significant peak current enhancement and the negative shift of peak potential. Additionally, chronocoulometry and electrochemical impedance spectroscopy (EIS) were also used for further investigation of the electrode process of estrone, indicating that low concentration of CTAB exhibits excellent enhancement effects on the electrochemical oxidation of estrone, greatly enhances the diffusion coefficient and the electron transfer rate. Based on this, an electrochemical method was proposed for the determination of estrone. The oxidation peak current is proportional to the concentration of estrone in the ranges over 9.0 × 10?8 - 8.0 × 10?6 mol/L, and a low detection limit of 4.0 × 10?8 mol/L was obtained for 180s accumulation at open circuit (S/N = 3). Finally, this proposed method was demonstrated using estrone tablets with good satisfaction.

Electrochemical Investigation of Inhibitory of New Synthesized 3-(4-Iodophenyl)-2-Imino-2,3-Dihydrobenzo[d]Oxazol-5-yl 4-Methylbenzenesulfonate on Corrosion of Stainless Steel in Acidic Medium

  • Ehsani, Ali;Moshrefi, Reza;Ahmadi, Maliheh
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.7-15
    • /
    • 2015
  • 3-(4-Iodophenyl)-2-imino-2,3-dihydrobenzo[d]oxazol-5-yl 4-methylbenzenesulfonate (4-IPhOXTs) was synthesized and its inhibiting action on the corrosion of stainless steel 316L (SS) in sulfuric acid was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of the investigation show that this compound has excellent inhibiting properties for SS corrosion in sulfuric acid. Inhibition efficiency increases with increase in the concentration of the inhibitor. The adsorption of 4-IPhOXTs onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of −8.45 kJ mol−1 . Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of 4-IPhOXTs.

고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정 (Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate)

  • 오인환;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권3호
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.