• 제목/요약/키워드: EEG(Electroencephalography)

검색결과 226건 처리시간 0.02초

Characteristics of late-onset epilepsy and EEG findings in children with autism spectrum disorders

  • Lee, Ha-Neul;Kang, Hoon-Chul;Kim, Seung-Woo;Kim, Young-Key;Chung, Hee-Jung
    • Clinical and Experimental Pediatrics
    • /
    • 제54권1호
    • /
    • pp.22-28
    • /
    • 2011
  • Purpose: To investigate the clinical characteristics of late-onset epilepsy combined with autism spectrum disorder (ASD), and the relationship between certain types of electroencephalography (EEG) abnormalities in ASD and associated neuropsychological problems. Methods: Thirty patients diagnosed with ASD in early childhood and later developed clinical seizures were reviewed retrospectively. First, the clinical characteristics, language and behavioral regression, and EEG findings of these late-onset epilepsy patients with ASD were investigated. The patients were then classified into 2 groups according to the severity of the EEG abnormalities in the background rhythm and paroxysmal discharges. In the severe group, EEG showed persistent asymmetry, slow and disorganized background rhythms, and continuous sharp and slow waves during slow sleep (CSWS). Results: Between the two groups, there was no statistically significant difference in mean age (P=0.259), age of epilepsy diagnosis (P=0.237), associated family history (P=0.074), and positive abnormal magnetic resonance image (MRI) findings (P=0.084). The severe EEG group tended to have more neuropsychological problems (P=0.074). The severe group statistically showed more electrographic seizures in EEG (P=0.000). Rett syndrome was correlated with more severe EEG abnormalities (P=0.002). Although formal cognitive function tests were not performed, the parents reported an improvement in neuropsychological function on the follow up checkup according to a parent's questionnaire. Conclusion: Although some ASD patients with late-onset epilepsy showed severe EEG abnormalities, including CSWS, they generally showed an improvement in EEG and clinical symptoms in the longterm follow up. In addition, severe EEG abnormalities tended to be related to the neuropsychological function.

Neural activity during simple visual imagery compared with mental rotation imagery in young adults with smartphone overuse

  • Hwang, Sujin;Lee, Jeong-Weon;Ahn, Si-Nae
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권4호
    • /
    • pp.164-169
    • /
    • 2017
  • Objective: This research investigated the effects of simple visual imagery and mental rotation imagery on neural activity of adults who are at high risk of smart phone addiction by measuring their electroencephalography (EEG). Design: Cross-sectional study. Methods: Thirty people with a high risk of smart phone addiction was selected and then were evaluated for their neural activation patterns using EEG after reminding them about simple visual imagery and mental rotation imagery. A simple visual image was applied for 20 seconds using a smartphone. This was followed by a resting period of 20 seconds. Mental rotation imagery was applied for 20 seconds. During mental rotation imagery, the rotational angle was selected at random. We compared activation patterns according to the analyzed EEG with hemisphere reminding them about imagery. Results: On the EEG, theta rhythm from the left hemisphere parietal area increased when the subjects were reminded of mental rotation imagery, and sensorimotor rhythm from close to the left hemisphere area increased when the subjects were reminded of simple visual imagery. Conclusions: Neural activation from the left hemisphere occurs for motor imagery in adults who are at high risk of smart phone addiction. These results identify a neural mechanism of adults who a have high risk of smart phone addiction, which may provide contribute to the development of motor rehabilitation for smartphone users.

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

Automated epileptic seizure waveform detection method based on the feature of the mean slope of wavelet coefficient counts using a hidden Markov model and EEG signals

  • Lee, Miran;Ryu, Jaehwan;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.217-229
    • /
    • 2020
  • Long-term electroencephalography (EEG) monitoring is time-consuming, and requires experts to interpret EEG signals to detect seizures in patients. In this paper, we propose a novel automated method called adaptive slope of wavelet coefficient counts over various thresholds (ASCOT) to classify patient episodes as seizure waveforms. ASCOT involves extracting the feature matrix by calculating the mean slope of wavelet coefficient counts over various thresholds in each frequency subband. We validated our method using our own database and a public database to avoid overtuning. The experimental results show that the proposed method achieved a reliable and promising accuracy in both our own database (98.93%) and the public database (99.78%). Finally, we evaluated the performance of the method considering various window sizes. In conclusion, the proposed method achieved a reliable seizure detection performance with a short-term window size. Therefore, our method can be utilized to interpret long-term EEG results and detect momentary seizure waveforms in diagnostic systems.

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.

뇌파검사에서 전도성 접착제의 비교분석: 인공산물과 만족도 평가 (Comparative Analysis of Conductive Paste in Electroencephalography: Evaluation of Artifact and Satisfaction)

  • 송재환;김성희;김대현
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.85-88
    • /
    • 2024
  • 뇌파검사는 뇌전증을 진단하고 뇌의 기능을 측정하는 검사로, 검사 시 전극과 피부 사이의 공간을 전도성 접착제로 채워 전극과 두피 사이의 저항 값을 줄여 보다 분명한 뇌파측정신호를 측정 및 접착을 돕는다. 이 연구의 목적은 현재 사용되는 대표적인 2가지의 전도성 접착제(Ten20, Elefix)의 인공산물, 교류혼입의 비교 및 두 가지 전도성 접착제 사용 후 만족도 조사를 실시하였다. 두 가지 전도성 접착제의 인공산물 및 교류혼입의 차이는 관찰되지 않았으나, 검사를 실시한 학생을 대상으로 한 설문 결과에서 Elefix 전도성 접착제가 더 좋은 만족도 및 접착력의 정도를 볼 수 있었다. 그러나 이는 현재 설문을 진행한 대상이 뇌파검사 실습수업에서 이미 Elefix 전도성 접착제를 먼저 사용해 본 경험에 따른 각인효과에 의한 결과일 수 있어 추가적인 연구가 필요하다.

EEG Characteristic Analysis of Sleep Spindle and K-Complex in Obstructive Sleep Apnea

  • Kim, Min Soo;Jeong, Jong Hyeog;Cho, Yong Won;Cho, Young Chang
    • 한국산업정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.41-51
    • /
    • 2017
  • This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage. We Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea Events. For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea. We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet 4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and Accurate Decision with Lesser Computational Time.

Brain Alpha Rhythm Component in fMRI and EEG

  • Jeong Jeong-Won
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권4호
    • /
    • pp.223-230
    • /
    • 2005
  • This paper presents a new approach to investigate spatial correlation between independent components of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging pure alpha activity, data from each modality were acquired separately under a 'three conditions' setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using a Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. Then, the sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that is specially designed to find the most probable dipole distribution minimizing the localization error in sense of LMSE. The resulting active dipoles were spatially transformed to 3D MRls of the subject and compared to fMRI alpha activity maps. A good spatial correlation was found in the spatial distribution of alpha sources derived independently from fMRI and EEG, suggesting the proposed method can localize the cortical areas responsible for generating alpha activity successfully in either fMRI or EEG. Finally a functional connectivity analysis was applied to show that alpha activity sources of both modalities were also functionally connected to each other, implying that they are involved in performing a common function: 'the generation of alpha rhythms'.

정량적 분석을 위한 뇌파 측정 방법 (EEG Recording Method for Quantitative Analysis)

  • 허재석;정경미
    • 대한임상검사과학회지
    • /
    • 제51권4호
    • /
    • pp.397-405
    • /
    • 2019
  • 정량적 뇌파는 연구와 임상적 분야에서 활발하게 이용되어 다양한 임상적 증상과 인지기능의 자극 및 과제에 따른 대뇌의 생물학적인 바이오 마커를 규명하는 등 대뇌의 변화를 객관적으로 증명하는데 지속적으로 사용되고 있다. 뇌파에서 정량적 분석과 정성적 분석은 분석하는 방법이 다르기 때문에 측정 방법과 환경이 비슷하지만 한편으론 다르다. 정성적 분석은 뇌파를 판독하는 사람이 잡파를 제외시키고 볼 수 있지만 정량적 분석은 수학적 모델링을 기반으로 데이터의 모든 것을 포함하여 분석을 실시하고 있기 때문에 잡파가 결과에 영향을 준다. 병원에서 임상생리학적 검사인 뇌파를 담당하는 임상병리사들이 뇌파를 이용한 연구는 다른 분야에 비해서 아주 드물다. 이러한 현상은 임상검사과학 분야 중에 임상생리학적 검사에서 두드러지게 나타난다. 왜냐하면 현재 대학에서 임상생리학을 연구하는 실험실이 많지 않기 때문이다. 본 저자의 목적은 정량적 분석을 하고자 하는 임상병리사, 대학원생, 연구자들이 쉽게 접근하여 앞으로 뇌파의 많은 연구가 이루어 질 수 있는 기초자료로 활용되기를 기대하고, 앞으로 많은 대학에서 임상생리학 실험실이 생겨 많은 연구들이 이루어져 좋은 논문들이 많이 나오기를 기대해 본다.

정량화 뇌파(QEEG)의 임상적 이용 (Clinical Applications of Quantitative EEG)

  • 윤탁;권준수
    • 수면정신생리
    • /
    • 제2권1호
    • /
    • pp.31-43
    • /
    • 1995
  • Recently, the methods that measure and analyze brain electrical activity quantitatively have been available with the rapid development of computer technology. The quantitative electroencephalography(QEEG) is a method of computer-assisted analyzing brain electrical activity. The QEEG allows for a more sensitive, precise and reproducible examination of EEG data than that can be accomplished by conventional EEG. It is possible to compare various EEG parameters each other by using QEEG. Neurometrics, a kind of the quantitative EEG. is to compare EEG characteristics of the patient with normative data to determine in what way the patient's EEG deviates from normality and to discriminate among psychiatric disorders. Nowadays, QEEG is far superior to conventional EEG in its detection of abnormality and in its usefulness in psychiatric differential diagnosis. The abnormal findings of QEEG in various psychiatric disorders are also discussed.

  • PDF