• Title/Summary/Keyword: EC_NH

Search Result 232, Processing Time 0.021 seconds

Chemical characteristics of Rainwater in Suwon (수원지역 강우의 화학적 특성)

  • Lee, Jong-Sik;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Min-Kyeong;Yu, Sun-Gang;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.239-244
    • /
    • 2008
  • To evaluate the acidity and chemical characteristics of rainwater in Korea, its pH and ion concentrations were investigated in Suwon from April to December, 2006. In addition, to estimate the contribution of ions on its acidity, ion composition and neutralization effect of major cations were investigated. Ion balance and electrical conductivity balance between measured and estimated values showed a high correlation. The mean pH and EC in rainwater collected during the investigation periods were 4.7 and $17.6{\mu}S\;cm^{-1}$, respectively. The monthly variation in EC showed a clear seasonal pattern, which had the lowest value of $9.1{\mu}S\;cm^{-1}$ in July and increased remarkably in November. $Na^+$ was the most abundant cation and followed by $NH_4{^+}>Ca^{2+}>H^+>Mg^{2+}>K^+$. Among them, $Na^+$ and $NH_4{^+}$ accounted for more than 65% of the total cations. In case of anions, the relative abundance was $SO_4{^{2-}}>NO_3{^-}>Cl^-$. About 67% of the total anions in rainwater was $SO_4{^{2-}}$, which showed $119.0{\mu}eq\;L^{-1}$ as mean value during the monitoring periods. Furthermore, 94% of the soluble sulfate in rainwater was identified as nss-$SO_4{^{2-}}$(non-sea salt sulfate). We also found that $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity, especially in dry season.

Neutralization of Acidity and Ionic Composition of Rainwater in Taean (태안지역 강우의 산성도 중화 및 화학성 평가)

  • Lee, Jong-Sik;Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Mann;Jung, Tae-Woo;Jung, Im-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.336-340
    • /
    • 2009
  • The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October were investigated at Taean in 2007. Also, to estimate the contribution of ions on its acidity, ion composition characteristics and neutralization effects by cation ions were determined. The ion balance between cations and anions values showed high correlation. The mean values of pH and EC were 4.9 and $32.9{\mu}S\;cm^{-1}$, respectively. The EC of rainwater showed seasonal characteristic, which was $91.4{\mu}S\;cm^{-1}$ with relatively low rainfall compared with other monitoring periods. $Na^+$ was the main cation followed by $NH_4{^+}$ > $Ca^{2+}$ > $H^{+}$ > $Mg^{2+}$ > $K^+$. Among these ions, $Na^{+}$ and $NH_4{^+}$ covered over 70% of total cations. In the case of anion, the order was $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^{-}$. The mean value of sulfate, which is main anion component in the samples was $152.1{\mu}eq\;L^{-1}$. Also, 90% of soluble sulfate in rainwater was $nss-SO_4{^{2-}}$(non-sea salt sulfate). With fractional acidity and theoretical acidity of rainwater samples, $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity.

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

Management of nutrient solution based on $NH_4H_2PO_$ concentration in deep flow culture of cherry tomato (방울토마토 담액수경재배시 $NH_4H_2PO_$ 농도에 기초한 배양액 조절)

  • 이문정;김성은;김영식
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • 순환식 수경재배에서 배양액의 조성이나 농도를 정해놓고 일정기간 공급하면 배양액의 pH와 EC의 변화가 생긴다. 보통 배양액의 공급은 재배개시시에 다량 공급하고 그 이후에는 부족한 양만큼을 공급하게 되는데, 시작배양액과 추가배양액의 조성은 같아도 이온의 총량은 다르다. 때문에 재배기간중에 pH의 변화양상이 다르게 나타나는 것이다. 이러한 현상을 피하기 위하여 이온의 총량을 기초로 하여 추가배양액의 이온조성을 조정하여 공급하므로써 배양액의 pH를 안정하게 유지할 수 있을 것으로 추측한다. (중략)

  • PDF

Chemical Characteristics of Soil and Groundwater in Plastic Film House Fields under Fertigation System (시설하우스 관비재배 토양과 지하수의 화학성)

  • Lee, Young-Han;Lee, Seong-Tae;Lee, Sang-Dae;Kim, Yeong-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.326-333
    • /
    • 2005
  • To enhance groundwater quality and soil nutrient management in fertigated plastic film house, groundwater samples from Jinju 52, Sacheon 3, Changnyeong 3, Sancheong 4 and Namhae 2 sites and soil samples from Jinju 23 sites were collected from September to November in 2004. The average concentration of $NO_3-N$ in groundwater was $12.0mg{\ell}^{-1}$ and 20% of survey sites exceeded the limiting level $(20mg{\ell}^{-1})$ of agricultural goundwater quality. The amount of ions in groundwater was in the order of $Ca^{2+}>Na^+>Mg^{2+}>NH_4-N>K^+$ in cations and ${HCO_3}^->{SO_4}^{2-}>NO_3-N>Cl^-$ in anions. Electrical conductivity of groundwater was positively correlated with $Ca^{2+},\;Cl^-,\;Mg^{2+},\;{SO_4}^{2-},\;NO_3-N\;and\;Na^+$ concentrations. In addition, it had significantly positive correlation with sum cations and anions, respectively $({\Sigma}cations\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}4.65,\;{\Sigma}anions\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}7.63\;and\;{\Sigma}\;(cations+anions,\;me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}11.1)$. The proportions of soil chemical properties over the critical levels for crop production in fertigated plastic film house were 56.5% in pH, 47.8% in OM, 95.7% in available $P_2O_5$, 78.3% in exchangeable K, 87% in exchangeable Ca, 56.5% in exchangeable Mg and 43.5% in EC. Soil pH was positively correlated with pH $(r=0.540^{**})$ and ${HCO_3}^-$ concentration $(r=0.523^{**})$ of groundwater.

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

Adsorption characteristics of NH4-N by biochar derived from pine needles

  • Kang, Yun-Gu;Lee, Jun-Young;Chun, Jin-Hyuk;Lee, Jae-Han;Yun, Yeo-Uk;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.589-596
    • /
    • 2021
  • Nitrogen applied to soil is highly prone to leaching and volatilization leading to gaseous emissions of nitrous oxide (N2O) and ammonia (NH3) which are of great environmental concern. Usage of biochar to reduce the discharge of nitrogen to the environment has attracted much interest in the recent past. Biochar is produced by pyrolyzing various biomasses under oxygen-limited conditions. Biochar is a carbonized material with high adsorptive powers for not only plant nutrients but also heavy metals. The objective of this study was to investigate the adsorption characteristics of NH4-N onto biochar made from pine needles. The biochar was produced at various pyrolysis temperatures including 300, 400 and 500℃ and holding times of 30 and 120 minutes. The Langmuir isotherm was used to evaluate the adsorption test results. The chemical properties of the biochar varied with the pyrolysis conditions. In particular, the pH, EC and total carbon content increased with the increasing pyrolysis conditions. The rate of adsorption of NH4-N by the biochar decreased with the increasing pyrolysis conditions. Of these conditions, biochar that was pyrolyzed at 300℃ for 30 minutes showed the highest adsorption rate of approximately 0.071 mg·g-1. Thus, the use of biochar pyrolyzed at low temperatures with a short holding time can most efficiently reduce ammonia emissions from agricultural land.

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Development of Optimum Nutrient Solution for Dill (Anethum graveolens L.) in Hydroponics (딜의 수경재배에 적합한 배양액 개발)

  • 여경환;이용범
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • This experiment was conducted to determine the mineral absorption character and develop the optimum composition of nutrient solution for dill(Anethum graveolens L.) in hydroponics. Dill(Anethum graveolens L.) plants were grown in nutrient film technique(NFT) supplied with 1/4, 1/2, and 1 strength of the nutrient solution developed by National Research Station in Japan(HRS). Plants grown in 1/2 strength showed the best growth in plant height, fresh weight, and dry weight compared with those grown in 1/4 or 1 strength. In 1/2 strength solution, pH and EC changed little and proper nutrient contents were observed in the leaves as compared to plant nutrient diagnosis standard. Based on these results, optimum macronutrients were composed by nutrient- water absorption rate(n/w) with 1/2 strength: NO$_2$―N 8.85, NH$_4$―N 0.55, P 2.1, K 6.2, Ca 2.8, and Mg 1.7 me L$^{-1}$ To examine the suitability of the nutrient solution developed(SCU) , dill plants were grown in NFT supplied with two different kinds of solution and concentration. 1/2, 1, 3/2 and 25 of SCU and 1/2S of HRS. Changes of pH and EC were not distinct in 1S, but a significant change of pH was shown in low concentrations-HRS 1/2S and SCU 1/2S. Shoot fresh and dry weight were much higher in the plants grown in SCU IS as compared with HRS 1/2S. There were no significant differences in growth of plants grown in SCU IS, 3/2S, and 25. In addition, nutrient contents in the leaves grown by SCU 1S were in proper levels as compared with plant nutrient diagnosis standard. SCU 1S developed in this experiment was found to be optimum for dill in hydroponics.

  • PDF

Investigation of Optimal ionic Concentration of Nutrient Solution for the Water Culture of Young Welsh Onion (실파의 수경재배에 적합한 양액농도 구명)

  • Won Jae Hee;Kim Sang Soo;Jeong Byung Chan;Park Kuen Woo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.269-274
    • /
    • 2005
  • The purpose of this experiment was to investigate optimal ionic concentration of nutrient solution for water culture of young welsh onion (Allium fistulosum). For the purpose of clarification of optimal nutrient concentration to maximize growth of young welsh onion, different nutrient concentrations of Yamazaki's solution for welsh onion seedling $(NO_3^--N\;9.0,\;NH_4^+-N\;3.0,\;PO_4^{3-}-P\;6.0,\;K^+7.0,\;Ca^{2+}\;2.0,\;Mg^{2+}\;2.0,\;and\;SO_4^{2-}-S\;4.4me{\cdot}L^{-1})$ which selected by prior experiment were treated as 0.6, 1.2, 1.8, and $2.4dS{\cdot}m^{-1}$. Increments of fresh weight, dry weight and top length were the highest in 1.2 and, in the next, were placed by the order of 1.8, 2.4, and $0.6dS{\cdot}m^{-1}$ The regression coefficients for the maximal growth of fresh weight of cv. 'Geurnjanguedaepa' and 'Tokyokuro' were $y=-42.091x^2+171.79x+11.047 (R^2=0.8946,\; R=0.9458^*)\;and\;y=-50.069x2+157.58x+15.414(R^2=0.9343,\;R=0.9692^{**})$, respectively, and optimal EC levels according to regression coefficients were 1.68 and $1.57dS{\cdot}m^{-1}$. As the conclusions, optimal nutrient levels far young welsh onion were $1.2dS{\cdot}m^{-1}$ EC in the early growth stage and $1.6\~l .7dS{\cdot}m^{-1}$ in the later growth stage.