• Title/Summary/Keyword: ECOSYSTEM OF RIVER

Search Result 599, Processing Time 0.029 seconds

Characteristics of Physico-chemical Water Quality Characteristics in Taehwa-River Watershed and Stream Ecosystem Health Assessments by a Multimetric Fish Model and Community Analysis (태화강 수계의 다변수 어류평가 모델 및 군집분석에 의한 이화학적 수질 특성 및 하천 생태건강도 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.428-436
    • /
    • 2010
  • This study was to evaluate water quality characteristics and ecological health using a mulimetric fish model in Taehwa-River watershed during May~September 2009. The ecological health assessments were based on the Index of Biological Integrity (IBI) using fish community and the multimetric model of Qualitative Habitat Evaluation Index (QHEI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of 2000~2009, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. Values of BOD and COD averaged $1.7\;mg\;L^{-1}$ (scope: $0.1{\sim}31.8\;mg\;L^{-1}$) and $3.6\;mg\;L^{-1}$ (scope: $0.4{\sim}33\;mg\;L^{-1}$), respectively during the study. Total nitrogen (TN) and total phosphorus (TP) averaged $2.8\;mg\;L^{-1}$ and $96.8\;{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypertrophic state. Also, TN and TP showed longitudinal increases toward the downriver reach. In the watershed, QHEI values varied from 67.5 (fair condition) to 164.5 (good condition) by the criteria of US EPA (1993). There was a abruptly decreasing tendency from T9 site in the QHEI values. According to 1st and 2nd surveys of Taewha River, multimetric model values of IBI was averaged 26.1 (n=14) with "good" condition (B) and the spatial variation was evident. Our results suggest that the mainstream sites was getting worse health condition along the river gradient due to inputs of the point and non-point sources from the urban (Ulsan city). Overall, dataset of IBI, QHEI, and water chemistry indicated that the ecological river health showed a downriver decline and the pattern was closely associated with habitat degradations and chemical pollutions as the waters pass through the urban region.

Summer Water Quality Management by Ecological Modelling in Ulsan Bay (생태계 모델을 이용한 울산만의 하계 수질관리)

  • Park, Sung-Eun;Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Cho, Yoon-Sik;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical study on coastal water quality management was conducted to examine the response of summer water quality to the flow into the sea of land based pollution load in Ulsan Bay, Korea The abatement of pollution load. from point sources of land was estimated on the basis of Korean coastal water quality standard using an ecosystem model. The results of the ecological model simulation showed that COD values in the inner part of the bay were greater than 280mg/L, and exceeded the grade III limit of Korean coastal water quality standard 30% of all land based pollution loads or organic and inorganic material loads from point sources should be cut down to keep the COD levels below 2mg/L. As environmental carrying capacity was estimated to be 7,193kgCOD/day to keep the COD levels below 2mg/L in Ulsan Bay, 3,083kgCOD/day of land based organic loads should be reduced. The phytoplankton blooms have occurred in the Teahwa river mouth or estuary repetitively, so it is important to control land based nutrients loads for removal of autochthonous organic loads around Ulsan Bay.

Metagenomic Approach on the Eukaryotic Plankton Biodiversity in Coastal Water of Busan (Korea) (부산 연안역의 진핵플랑크톤 종다양성에 대한 메타게놈 분석 연구)

  • Yoon, Ji-Mie;Lee, Jee-Eun;Lee, Sang-Rae;Rho, Tae-Keun;Lee, Jin-Ae;Chung, Ik-Kyo;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.59-75
    • /
    • 2012
  • The species composition of plankton is essential to understand the material and energy cycling within marine ecosystem. It also provides the useful information for understanding the properties of marine environments due to its sensitivity to the physicochemical characteristics and variability of water masses. In this study we adopted metagenomics to evaluate eukaryotic plankton species diversity from coastal waters off Busan. Characteristics of water masses at sampling sites is expected to be very complex due to the mixing of various water masses; Nakdong River runoff, Changjiang diluted water (CDW), South Sea coastal water, and Tsushima warm current. 18S rDNA clone libraries were constructed from surface waters at the three sites off Busan. Clone libraries revealed 94 unique phylotypes from 370 clones; Dinophyceae(42 phylotypes), Ciliophora(15 phylotypes), Bacillariophyta(7 phylotypes), Chlorophyta(2 phylotypes), Haptophyceae(1 phylotype), Metazoa(Arthropoda( 17 phylotypes), Chaetognatha(1 phylotypes), Cnidaria(2 phylotypes), Chordata(1 phylotype)), Rhizaria (Acantharea(2 phylotypes), Polycystinea(1 phylotype)), Telonemida(1 phylotype), Fungi(2 phylotypes). The difference in species diversity at the closely located three sites off Busan may be attributed to the various physicochemical properties of water masses at these sites by the mixture of water masses of various origins. Metagenomic study of species composition may provide useful information for understanding marine ecosystem of coastal waters with various physicochemical properties in the near feature.

DISTRIBUTION CHARACTERISTICS OF NUTRIENTS IN CHINESE BOHAI SEA

  • Li, Zhengyan;Gao, Huiwang;Bai, Jie;Shi, Jinhui
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.19-29
    • /
    • 2001
  • Nutrients are key environmental factors in marine ecosystem. They limit algal growth when at low concentrations and cause algal bloom when at high contents. They also control the growth and succession of many other biota including bacteria and zooplankton, either directly or indirectly. Nutrient contents therefore affect both the structure and functions of marine ecosystem. To study the contents and distribution of nutrients in Chinese Bohai Sea, two cruise surveys were undertaken in August 2000 (summer) and January 2001 (winter), respectively. A total of 595 water samples were collected from 91 sites. After collection the samples were transported to the laboratory and five nutrients, i.e., nitrate, nitrite, ammonia, phosphate and silicate, were analyzed. The results showed that tile average concentration of total inorganic nitrogen (TIN) in Bohai Sea in winter (6.5293.717 ${\mu}$mol$.$l$\^$-1/) was significantly higher than that in summer (3.717 ${\mu}$mol$.$l$\^$-1/). The phosphorus concentration in winter (0.660 ${\mu}$mol$.$l$\^$-1/) was also significantly higher than that in summer (0.329 ${\mu}$mol$.$l$\^$-1/). Mean silicate concentration in winter (7.858 ${\mu}$mol$.$l$\^$-1/) was not significantly different from that in summer (7.200 ${\mu}$mol$.$l$\^$-1/). Nutrients also varied considerable among different areas within Bohai Sea. TIN concentration in Laizhou Bay (4.444 ${\mu}$mol$.$l$\^$-1/), for example, was significantly higher than those in Bohai Bay (2.270 ${\mu}$mol$.$l$\^$-1/) and Bohai Straight (2.431 ${\mu}$mol$.$l$\^$-1/), which probably reflects tile discharge of large amounts of nitrogen into Laizhou Bay via Yellow River. The nutrients also showed vertical distribution pattern. In summer, nutrients in bottom layer were generally higher than those in surface and medium layers. In winter, however. nutrients in different layers were not significantly different Compared with historic data, TIN contents increased continuously since early 1980s, phosphorus arid silicone contents, nevertheless, fell down to some degree. Based on atomic ratios of different nutrients, nitrogen is still the main limiting factor for algal growth in Bohai Sea.

  • PDF

Characteristics of Fish Community Structure before the Dam Operation in the Naeseong Stream, Korea (내성천에서 영주댐 운영전 어류 군집구조의 특성)

  • Won, Jong-Seo;Kim, Seog Hyun;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.34-43
    • /
    • 2017
  • The Naeseong Stream as a tributary of Nakdong River has conserved the unique structure and function of a typical sand-bed stream ecosystem. However, it is expected to change the stream bed environments and then the fish fauna in the downstream of the dam after the operation of the Yeongju Dam from 2016. We collected fishes and investigated their habitat environments from 2014 to 2016 in the downstream of the Yeongju Dam under construction in order to monitor changes in habitat environment, fauna and community structure of fishes in the Naeseong Stream. The size of the bed materials increased immediately downstream of the Yeongju Dam under construction. Before the operation of the Yeongju Dam, Zacco platypus was dominated and Opsarichthys uncirostris amurensis, Coreoleuciscus splendidus, Hemibarbus longirostris and Pseudogobio esocinus were sub-dominated according to the different sampling sites. Hemibarbus labeo, H. longirostris, Pseudogobio esocinus, Gobiobotia nakdongensis, Cobitis hankugensis and Leiocassis ussuriensis were found as a psammophilous fish specific to sand stream in the Naeseong Stream. At the downstream of the dam, the fish community was classified into a group of gravel-bed fishes such as Microphysogobio yaluensis, Coreoleuciscus splendidus and Coreoperca herzi and a group of sand-bed fishes such as Hemibarbus labeo, Cobitis hankugensis and Gobiobotia nakdongensis. These fish communities gradually tended to change from sand-bed fish community to gravel-bed fish community during the construction of the Yeongju Dam. Therefore, it is necessary to collect the baseline data for the stream ecosystem conservation in the sandy stream by continuously monitoring changes in the environment and fish in the downstream of the Youngju Dam.

Study for Building Ecological Network in East-North Asia (동북아 생태네트워크 구축을 위한 방안 고찰)

  • Jeon, Seong-Woo;Lee, Moung-Jin;Kang, Byung-Jin;Shin, Ji-Young
    • Journal of Environmental Policy
    • /
    • v.8 no.3
    • /
    • pp.1-26
    • /
    • 2009
  • In the 1990s, when the viewpoint that an ecosystem is a single network within a specific region was adopted, the preservation and management of natural ecosystems was proposed. With regard to Northeast Asia, the expansion of trans-boundary pollution due to rapid development and the swift destruction of the natural environment emphasize the necessity for environmental cooperation. The Northeast Asia region made up of South Korea, North Korea, three northeastern prefectures in China, the Russian far-east, and parts of Mongolia were selected to be analyzed for an ecological network. The significance of this study lies in the development of a methodology for building a Northeast Asian ecological network through the use of satellite images. Regarding the methods of analysis, stable habitats for four priority species were selected to be performed using overlay analysis. The result of the analysis of the ecological networks in the whole Northeast Asia region showed that there were key areas partly dispersed in the Korean Peninsula, but whether the key areas would be maintained in the long term is unknown. As for China, key areas were concentrated in the border areas around the Tumen River and in parts of the three northeastern prefectures. Russia had wide-ranging areas that could function as stable habitats for most species. As a result of the actual conditions of the ecological networks, most of the Northeast Asia region, including the Korean Peninsula, was in poor condition, requiring appropriate measures and their operation as soon as possible. Also, it was revealed that further investigation and research was necessary for border areas that were identified to be key areas.

  • PDF

The Loads and Biogeochemical Properties of Riverine Carbon (하천 탄소의 유출량과 생지화학적 특성)

  • Oh, Neung-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.245-257
    • /
    • 2016
  • Although rivers cover only 0.5% of the total land area on the Earth, they are windows that show the integrated effects of watershed biogeochemistry. Studies on the loads and properties of riverine carbon have been conducted because they are directly linked with drinking water quality, and because regional or global net ecosystem production (NEP) can be overestimated, unless riverine carbon loads are subtracted. Globally, ${\sim}0.8-1.5Pg\;yr^{-1}$ and ${\sim}0.62-2.1Pg\;yr^{-1}$ of carbon are transported from terrestrial ecosystems to the ocean via rivers and from inland waters to the atmosphere, respectively. Concentrations, ${\delta}^{13}C$, and fluorescence spectra of riverine carbon have been investigated in South Korea to understand the spatiotemporal changes in the sources. Precipitation as well as land use/land cover can strongly influence the composition of riverine carbon, thus shifting the ratios among DIC, DOC, and POC, which could affect the concentrations, loads, and the degradability of adsorbed organic and inorganic toxic materials. A variety of analyses including $^{14}C$ and high resolution mass spectroscopy need to be employed to precisely define the sources and to quantify the degradability of riverine carbon. Long-term data on concentrations of major ions including alkalinity and daily discharge have been used to show direct evidence of ecosystem changes in the US. The current database managed by the Korean government could be improved further by integrating the data collected by individual researchers, and by adding the major components ions including DIC, DOC, and POC into the database.

Monitoring Vegetation Changes after Constructing the Vegetation-mat Measures for Greening in Embankment - A Case Study of Tancheon, Seongnam - (호안 녹화용 매트 시공 후 식생변화 모니터링 - 성남시 탄천을 중심으로 -)

  • Lee, Soo-Dong;Kang, Hyun-Kyung;Jang, Han-Sol
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.302-317
    • /
    • 2010
  • In this study, not only to present the management plan but also to verify the effectiveness for a area of improving the landscape and the area of creating the base of bio-inhabitation in Tancheon stream concrete embankment where were practised the vegetation-mat measures for greening via monitoring i.e. restoration progress. The results of monitoring, there were a total of 41 taxa, 18 families, 38 species, 3 varieties in 2006, moreover in the 2007, there were a total of 59 taxa, 19 families, 56 species, 3 varieties and in the period 2008, 64 taxa, 29 families, 59 species, 8 varieties. Therefore, these site has increased the plant spaces year by year. The distribution of vegetation characteristics shows that Miscanthus sacchariflorus and Pennisetum alopecuroides expands their influence in the area of applying the construction method. Those area appears a diversity of native species by the stream deposition at the flood. Thus, its condition is very soundly ecological health and eco-friend. At present, native species have been dominant, however, disturbed species and invasive species can be expected to increase dramatically in the future. Therefore, it is necessary to a long-range monitoring and management for maintaining an environmentally sound aquatic ecosystem. On this area refer to mix the river vegetation of primary succession and disturbed vegetation. For that reason, the method of constructing the vegetation-mat measures for greening in embankment does not need to remove the concrete and can install a coir-mat on the top. It leads to improve the landscape, moreover, it was analysed the such dramatic changes in the vegetation species richness by providing continuous the plant growth basis have a impact on in bio-diversity.

Heavy Metal Contamination of Soil by Wash Water of Ready Mixed Concrete (레미콘 세척수에 의한 토양의 중금속 오염)

  • Oh, Se-Wook;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Generally, ready-mixed concrete(RMC) gets hardened by time, so the remaining concrete in the drum should be cleaned. But if the RMC waste water generated from this is discharged to soil without any treatment, the strong alkaline elements and heavy metals affect water and ecosystem pollution. Although about 10 to 15% of water used for cleaning in the RMC factory is discharged to soil or river, the concrete report of this affecting soil pollution has not been sufficient. Hence, in this study it was analyzed the extraction of cleaning water from RMC factories all over the country and heavy metal and pH components remaining in soil when this is penetrated to various soils having water permeability. The specimens used for the experiment are weathering soil and soils having different particle size, and it is made to be penetrated to those for 24 hours while fixed thickness of the layer is maintained. Cleaning water is divided into that before deposition treatment(sludge water) and that after deposition treatment(upper water) to be penetrated into soil, and according to the result of penetrating sludge water to soil, Cu and Mn, Fe, and Zn were found to be remained over 23 to 90%. However, it is analyzed that in upper water having deposition treatment, Cu and Mn remain as 60% or more only in weathering soil.

Design of Riparian Buffer Zone by Citizen's Participation for Ecosystem Service - Case Study of Purchased Land along Gyeongan-cheon in Han River Basin - (생태계 서비스를 위한 주민 참여형 수변완충녹지 설계 고찰 - 한강수계 경안천변 매수토지 사례 연구 -)

  • Bahn, Gwon-Soo
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.170-184
    • /
    • 2022
  • The Riparian Buffer Zone(RBZ) is a sustainable social-ecological system created in the middle zone between water and land. For the RBZ, close communication with the local community is important, and it is necessary to promote it as a communicative environmental planning process. In this study, for the RBZ project, three strategies are presented as a communicative act to understand and implement planning. First, government-led projects were avoided and improved to a process in which citizens and stakeholders participated together, centered on local partnership. Second, it was intended to introduce design criterias in terms of enhancing the function of ecosystem services that citizens can sympathize with, and to increase acceptance and awareness through the planning of preferred spaces and facilities. Third, after a balanced plan for habitats, water cycle-based ecological environment, ecological experience and open space, citizens felt the restoration effect and value as an ecological resources, and a system was prepared to participate in the operation and management. This study will work as a process model based on citizens's participation. In addition, it will be possible to provide lessons for the change of the policy paradigm for the RBZ and the implementation of similar projects in the future.