Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.2.059

Metagenomic Approach on the Eukaryotic Plankton Biodiversity in Coastal Water of Busan (Korea)  

Yoon, Ji-Mie (Division of Earth Environmental System, Pusan National University)
Lee, Jee-Eun (Division of Earth Environmental System, Pusan National University)
Lee, Sang-Rae (Marine Research Institute, Pusan National University)
Rho, Tae-Keun (Marine Research Institute, Pusan National University)
Lee, Jin-Ae (School of Environmental Science and Engineering, Inje University)
Chung, Ik-Kyo (Department of Oceanography, Pusan National University)
Lee, Tong-Sup (Department of Oceanography, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.2, 2012 , pp. 59-75 More about this Journal
Abstract
The species composition of plankton is essential to understand the material and energy cycling within marine ecosystem. It also provides the useful information for understanding the properties of marine environments due to its sensitivity to the physicochemical characteristics and variability of water masses. In this study we adopted metagenomics to evaluate eukaryotic plankton species diversity from coastal waters off Busan. Characteristics of water masses at sampling sites is expected to be very complex due to the mixing of various water masses; Nakdong River runoff, Changjiang diluted water (CDW), South Sea coastal water, and Tsushima warm current. 18S rDNA clone libraries were constructed from surface waters at the three sites off Busan. Clone libraries revealed 94 unique phylotypes from 370 clones; Dinophyceae(42 phylotypes), Ciliophora(15 phylotypes), Bacillariophyta(7 phylotypes), Chlorophyta(2 phylotypes), Haptophyceae(1 phylotype), Metazoa(Arthropoda( 17 phylotypes), Chaetognatha(1 phylotypes), Cnidaria(2 phylotypes), Chordata(1 phylotype)), Rhizaria (Acantharea(2 phylotypes), Polycystinea(1 phylotype)), Telonemida(1 phylotype), Fungi(2 phylotypes). The difference in species diversity at the closely located three sites off Busan may be attributed to the various physicochemical properties of water masses at these sites by the mixture of water masses of various origins. Metagenomic study of species composition may provide useful information for understanding marine ecosystem of coastal waters with various physicochemical properties in the near feature.
Keywords
eukaryotic plankton; biodiversity; 18S rDNA; clone library; cryptic species;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 강소라, 임동일, 김소영, 유해수, 2010. 북동중국해 내대륙붕 코아 퇴적물의 저서유공충 군집 특성과 고해양환경 변화. 지질학회지, 46: 395-411.
2 권기영, 이평강, 박철, 문창호, 박미옥, 2001. 섬진강 하구역에서 염분경사에 따른 동식물플랑크톤의 현존량 및 종조성. 한국해양학회지 바다, 6: 93-102.
3 김보경, 이상래, 이진애, 정익교, 2010. 분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석. 한국해양학회지 바다, 15: 25-36.
4 김요혜, 이준백, 2003. 제주도 남부해역의 부유성 섬모충류의 종조성과 계절 변동. 한국해양학회지 바다, 8: 59-69.
5 김일남, 이동섭, 2004. 하계 대한해협 저층냉수의 물리화학적인 특성 및 기원. Ocean Polar Res., 26: 595-606.   DOI   ScienceOn
6 김형신, 정민민, 2004. 한국연안해역의 착편모조 분포. 한국양식학회지, 17: 133-138.
7 문은영, 김영옥, 공동수, 한명수, 2008. 팔당호 유입부 경안천의 섬모충 플랑크톤 계절적 분포. 한국하천호수학회지, 41: 11-18.
8 문성용, 오현주, 서호영, 2010. 남해 연안 동물플랑크톤 군집의 계절변동. Ocean Polar Res., 32: 411-426.   DOI   ScienceOn
9 문창호, 최혜지, 1991. 낙동강 하구 환경특성 및 식물플랑크톤의 군집구조에 관한 연구. 한국해양학회지, 26: 144-154.
10 심재형, 양성렬, 이원호, 1989. 춘계 한국 동해 남부해역에서의 식물 수문학적 수역과 질산염약층의 수직양상. 한국해양학회지, 24: 15-28.
11 심재형, 여환구, 박종규, 1995. 한국 동해 남부해역의 일차생산계. II. 식물플랑크톤 군집구조. 한국해양학회지, 30: 163-169.
12 정익교, 강윤향, 김영진, 권오섭, 1998. 한국 연안 초미세플랑크톤 생태: 1. 대한해협 서수도 해역. Algae, 13: 101-107.
13 오현주, 이용화, 양준혁, 김승한, 2007. 2004년 하계 남해안 해황과 식물플랑크톤의 분포 특성. 한국지리정보학회지, 10: 40-48.
14 정해진, 유영두, 김재성, 2002. 전북 새만금 남쪽 해역의 유해성 적조 발생연구. 2. 1999년도 여름-가을 종속영양성 와편모류와 섬모충류의 시간적 변화. 한국해양학회지 바다, 7: 140-147.
15 최 상, 1969. 한국해역의 식물풀랭크톤의 연구. 4. 동해, 남해 및 서해해역의 식물플랑크톤. 한국해양학회지, 4: 49-67.
16 최정민, 강소라, 박일흠, 이연규, 2010. 천수만의 표층 퇴적물 및 저서 유공충의 분포 특성과 퇴적환경. J. Paleont. Soc. Korea., 26: 107-128.
17 최철만, 김진호, 김원일, 이종식, 정구복, 이정택, 문성기, 2007. 낙동강하류의 식물플랑크톤상과 군집구조. 한국환경농학회지, 26: 159-170.
18 Agatha, S., M.C. Strüder-Kypke and A. Beran, 2004. Morphologic and genetic variability in the marine planktonic ciliate Laboea strobila Lohmann, 1908 (Ciliophora, Oligotrichia), with notes on its ontogenesis. J. Eukaryot. Microbiol., 51: 267-281.   DOI   ScienceOn
19 Bowler, C., M.K. David and R.C. Rita, 2009. Microbial oceanography in a sea of opportunity. Nature, 459: 180-184.   DOI   ScienceOn
20 Bianchi, F., F. Acri, F. Bernardi Aubry, A. Boldrin, E. Camatti, D. Cassin and A. Comaschi, 2003. Can plankton communities be considered as bio-indicators of water quality in the laggon of Venice?. Mar. Pollut. Bull., 46: 964-971.   DOI   ScienceOn
21 Collins, A.G., P. Schuchert, A.C. Marques, T. Jankowski, M. Medina and B. Schierwater, 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst. Biol., 55: 97-115.   DOI   ScienceOn
22 DeLong, E.F., 2009. The microbial ocean from genomes to biomes. Nature, 459: 200-206.   DOI   ScienceOn
23 Gilg, I.C., L.A. Amaral-Zettler, P.D. Countway, S. Moorhi, A. Schnetzer and D.A. Caron, 2010. Phylogenetic affiliations of mesopelagic Acantharia and Antharian-like environmental 18S rDNA genes off the southern California coast. Protist, 161: 197- 211.   DOI   ScienceOn
24 Duffy, J.E. and J.J. Stachowicz, 2006. Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar. Ecol. Prog. Ser., 311: 179-189.   DOI
25 Edvardsen, B. and L.K. Medlin, 2007. Molecular systemtics of Haptophyta. Syst. Assoc. Spec., 75: 183-196.
26 Falkowski, P.G., R.T. Barber and V. Smetacek, 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 10: 200-206.
27 Guillou, L., M. Viprey, A. Chambouvet, R.M. Welsh, A.R. Kirkham, R. Massana, D.J. Scanlan and A.Z. Worden, 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to syndiniales (Alveolata). Environ. Microbiol., 10: 3349-3365.   DOI   ScienceOn
28 Hoppenrath, M., T.R. Bachvaroff, S.M. Handy, C.F. Delwiche and B.S. Leander, 2009. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences. BMC Evol. Biol., 9: 116.   DOI   ScienceOn
29 Huang, C. and Y. Qi, 1997. The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea. J. Plankton Res., 19: 303-318.   DOI   ScienceOn
30 Itaki, T., 2003. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea. Mar. Micropaleontol., 47: 253-270.   DOI   ScienceOn
31 Jeanmougin, F., J.D. Thompson, M. Gouy, D.G. Higgins and T.J. Gibson, 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci., 23: 403-405.   DOI   ScienceOn
32 Lee, S.-R., J.H. Oak and I.K. Chung and J.A. Lee, 2010. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP and sequencing. J. Appl. Phycol., 22: 699-707.   DOI   ScienceOn
33 Jones, E.B.G., 2011. Are there more marine fungi to be described?. Botanica Marina, 54: 343-354.
34 Kim, E. et al., 2011. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl. Acad. Sci. U.S.A., 108: 1496-1500.   DOI   ScienceOn
35 Kim, Y.O. and M.C. Jang, 2008. Temporal distribution of planktonic Ciliates in Jangmok Bay, south coast of Korea. Ocean Polar Res., 30: 419-426.   DOI   ScienceOn
36 Leppard, G.G. and M. Munawar, 1992. The ultrastructural indicators of aquatic ecosystem health. J. Aquat. Anim. Health, 1: 309-317.
37 Lopez-Garcia, P., F. Rodriguez-Valera, C. Pedros-Alio and D. Moreira, 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409: 603-607.   DOI   ScienceOn
38 Louie, L.W., S.T. Haley, E.D. Orchard, C.J. Gobler and S.T. Dyhrman, 2011. Nutrient-regulated transcriptional responses in the brown tide-forming alga Aureococcus anophagefferens. Environ. Microbiol., 13: 468-81.   DOI   ScienceOn
39 Matheny, P.B. et al., 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol., 43: 430-451.   DOI   ScienceOn
40 McDonald, S.M., J.N. Plant and A.Z. Worden, 2010. The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol. Biol. Evol., 27: 2268-2283.   DOI   ScienceOn
41 Maddison, W.P. and D.R. Maddison, 1991. MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.
42 Montani, S., S. Pithakpol and K. Tada, 1998. Nutrient regeneration in coastal sea by Noctiluca scintillans, a red tide causing dinoflagellate. J. Mar. Biotechnol., 6: 224-228.
43 Medlin, L.K., H.J. Elwood and S. Stickel, 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71: 491-499.   DOI   ScienceOn
44 Medlin, L.K., A.G. Sáez and J.R. Young, 2008. A molecular clock for Coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar. Micropaleontol., 67: 69-86.   DOI   ScienceOn
45 Monier, A., R.M. Welsh, C. Gentemann, G. Weinstock, E. Sodergren, E. Virginia Armbrust, J.A. Eisen and A.Z. Worden, 2012. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ. Microbiol., 14: 162-176.   DOI   ScienceOn
46 Moon-van der Staay, S.Y., R. De Wachter and D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409: 607-610.   DOI   ScienceOn
47 Not, F., J. del Campo, V. Balagué, C. de Vargas and R. Massana, 2009. New insights into the diversity of marine picoeukaryotes. PLoS ONE, 4: e7143.   DOI   ScienceOn
48 Palenik, B. et al., 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Nati. Acad. Sci. U.S.A., 104: 7705-7710.   DOI   ScienceOn
49 Papillon, D., Y. Perez, X. Caubit and X.L. Parco, 2006. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol. Phylogenet. Evol., 38: 621-634.   DOI   ScienceOn
50 Pauly, D. and V. Christensen, 1995. Primary production required to sustain global fisheries. Nature, 374: 255-257.   DOI   ScienceOn
51 Snoeyenbos-West, O.L.O., T. Salcedo, G.B. McManus and L.A. Katz, 2002. Insights into the diversity of choreotrich and oligotrich ciliates(Class: Spirotrichea) based on genealogical analyses of multiple loci. Int. J. Syst. Evol. Microbiol., 52: 1901-1913.   DOI   ScienceOn
52 Romari, K. and D. Vaulot, 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49: 784-798.   DOI
53 Rush, D.B. et al., 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biology, 5: e77.   DOI
54 Simon, C. and R. Daniel, 2011. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol., 77: 1153-1161.   DOI   ScienceOn
55 Swofford, D.L., 2001. PAUP: Phylogenetic Analysis Using Parsimony( and Other Methods). Sinauer, Sunderland, Massachusetts, USA.
56 Takano, Y. and T. Horiguchi, 2004. Surface ultrastructure and molecular phylogenetices of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae). Phycol. Res., 52: 107-116.   DOI
57 Tsuda, A., H. Sugisaki, T. Ishimaru, T. Saino and T. Sato, 1993. White-noise-like distribution of the oceanic copepod Neocalanus cristatus in the subarctic North Pacific. Mar. Ecol. Prog. Ser., 97: 39-46.   DOI