태화강 수계의 다변수 어류평가 모델 및 군집분석에 의한 이화학적 수질 특성 및 하천 생태건강도 평가

Characteristics of Physico-chemical Water Quality Characteristics in Taehwa-River Watershed and Stream Ecosystem Health Assessments by a Multimetric Fish Model and Community Analysis

  • 김유표 (충남대학교 생명시스템과학대학) ;
  • 안광국 (충남대학교 생명시스템과학대학)
  • Kim, Yu-Pyo (College of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (College of Bioscience and Biotechnology, Chungnam National University)
  • 투고 : 2010.08.15
  • 심사 : 2010.09.10
  • 발행 : 2010.09.30

초록

본 연구는 태화강 수계 14개 지점을 선정하고, 2009년 5월과 9월 2차례 조사를 실시하여 이 화학적 수질, 물리적 서식지 분석을 통하여 어류 분포특성 및 생태 건강도를 진단하였다. 생물통합지수(Index of Biological Integrity, IBI)모델 분석은 국내 하천의 특성에 맞게 수정 보완하여 8개 다변수 메트릭 모델을 이용하였고, 물리적 서식지 평가 지수(Qualitative Habitat Evaluation Index, QHEI)분석은 11개의 다변수 메트릭 모델을 적용하였다. 이 화학적 수질 분석은 태화강 수계의 환경부 수질 측정망 자료 중 2000년부터 2009년까지 10년간의 자료를 이용하여 분석하였다. 태화강의 지난 10년간 평균 BOD 값은 $1.7\;mg\;L^{-1}$로서 Ib(좋음) 등급을 보였고, $0.1{\sim}31.8\;mg\;L^{-1}$의 넓은 변이폭을 보였다. COD 값은 $3.6\;mg\;L^{-1}$로서 역시 큰 변이를 보였고($0.4{\sim}33\;mg\;L^{-1}$) TN의 평균값은 $2.8\;mg\;L^{-1}$ (범위: $0.1{\sim}14.8\;mg\;L^{-1}$)로 나타났으며, TP의 평균값은 $96.8\;{\mu}g\;L^{-1}$ (범위: $0{\sim}1675\;{\mu}g\;L^{-1}$)로 나타났다. 태화강의 물리적 서식지 평가 지수 값은 67.5로 "보통상태"(C)에서 164.5 "양호상태"(B)의 분포를 보이는 것으로 나타났다. 본류의 QHEI 값은 T9 지점 이후 하류로 갈수록 울산시의 영향으로 감소하는 것으로 나타났다. 태화강의 1, 2차 조사 결과 평균 26.1(n=14)로 "양호상태"(B)로 나타났다. 태화강 수계의 본류는 울산 시내를 관통하면서 점오염원 및 비점오염원의 영향을 받아 하류로 갈수록 건강성이 악화되는 경향을 보였다. 태화강 수계의 IBI, QHEI, 이 화학적 수질을 살펴보면 서식지질과 수질의 악화로 본류는 하류로 갈수록 건강성 이 감소하는 것으로 나타났다.

This study was to evaluate water quality characteristics and ecological health using a mulimetric fish model in Taehwa-River watershed during May~September 2009. The ecological health assessments were based on the Index of Biological Integrity (IBI) using fish community and the multimetric model of Qualitative Habitat Evaluation Index (QHEI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of 2000~2009, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. Values of BOD and COD averaged $1.7\;mg\;L^{-1}$ (scope: $0.1{\sim}31.8\;mg\;L^{-1}$) and $3.6\;mg\;L^{-1}$ (scope: $0.4{\sim}33\;mg\;L^{-1}$), respectively during the study. Total nitrogen (TN) and total phosphorus (TP) averaged $2.8\;mg\;L^{-1}$ and $96.8\;{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypertrophic state. Also, TN and TP showed longitudinal increases toward the downriver reach. In the watershed, QHEI values varied from 67.5 (fair condition) to 164.5 (good condition) by the criteria of US EPA (1993). There was a abruptly decreasing tendency from T9 site in the QHEI values. According to 1st and 2nd surveys of Taewha River, multimetric model values of IBI was averaged 26.1 (n=14) with "good" condition (B) and the spatial variation was evident. Our results suggest that the mainstream sites was getting worse health condition along the river gradient due to inputs of the point and non-point sources from the urban (Ulsan city). Overall, dataset of IBI, QHEI, and water chemistry indicated that the ecological river health showed a downriver decline and the pattern was closely associated with habitat degradations and chemical pollutions as the waters pass through the urban region.

키워드

참고문헌

  1. 김익수, 박종영. 2002. 한국의 민물고기. 교학사.
  2. 김익수, 최 윤, 이충렬, 이용주, 김병직, 김지현. 2005. 원색 한국어류대도감. 교학사.
  3. 김재흥. 2009. 태화강 수질개선사업의 투자효과 분석. 국토연구 62: 263-279.
  4. 류석환. 1993. 태화강의 수질오염 특성에 관한 연구-화학적 산소요구량과 염소이온 농도-. 한국환경과학회지 2(4): 291-297.
  5. 서진원, 임인수, 김호준, 이혜근. 2008. 울산 하천 및 강에서의 어류서식 현황 및 8개 대표종의 이화학적 수질 내성범위. 한국하천호수학회지 41(3): 283-293.
  6. 안광국, 김자현. 2005. 물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단. 한국육수학회지 38(3): 361-371.
  7. 안광국, 염동혁, 이성규. 2001a. 생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천수계의 평가. 환경생물 19: 261-269.
  8. 안광국, 정승현, 최신석. 2001b. 생물보전지수(Index of Biological Integrity) 및 서식지 평가지수(Qualitative Habitat Evaluation Index)를 이용한 평창강의 수환경 평가. 한국육수학회지 34: 153-165.
  9. 양홍준. 1980. 태화강의 잉어과 어류상에 관하여. 경북대학교 논문집 29: 419-428.
  10. 양홍준. 1982. 영남지역(낙동강, 형산강, 태화강)의 잉어과 어류에 관한 연구. 부산대학교 박사학위논문. 부산대학교, 41 pp.
  11. 울산시. 1990. 울산통계연보. 56 pp.
  12. 원두희, 전영철, 권순직, 황순진, 안광국, 이재관. 2006. 저서성대형무척추동물을 이용한 한국오수생물지수의 개발과 생물학적 하천환경평가 적용. 한국물환경학회지 22(5): 768-783.
  13. 이호원, 허성관, 이민웅. 1991. 남강 및 태화강 수질의 미생물학적 연구. 환경연구 13: 81-93.
  14. 장민호, 최기룡, 주기재. 2001. 울산지역(가지산) 상류하천의 어류군집. 한국육수학회지 34(3): 239-250.
  15. 환경부. 2008. 수생태계 건강성 조사 및 평가 최종보고서. 국립환경과학원.
  16. 황순진, 김난영, 원두희, 안광국, 이재관, 김창수. 2006. 돌말(Epilithic Diatom) 지수를 이용한 국내 주요하천(금강, 영산강, 섬진강)의 생물학적 수질평가. 한국물환경학회지 22(5): 784-795.
  17. Allison, H.R., B.J. Freeman and M.C. Freeman. 2007. Riparian influences on stream fish assemblage structure in urbanizing streams. Landscape Ecology 22: 385-402. https://doi.org/10.1007/s10980-006-9034-x
  18. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd Ed, EPA 841-B-99-002. US EPA Office of Water, Washington, D.C., USA.
  19. Ganasan, V. and R.M. Hughes. 1998. Application of index of biological integrity (IBI) to fish assemblages of the river Khan and Kshipra (Madhya Pradesh), India. Freshwater Biology 40(2): 367-383. https://doi.org/10.1046/j.1365-2427.1998.00347.x
  20. Harris, J.H. 1995. The use of fish in ecological assessment. Australian Journal of Ecology 20: 65-80. https://doi.org/10.1111/j.1442-9993.1995.tb00523.x
  21. Horton, R.E. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  22. Karr, J.R 1981. Assessment of biotic integrity using fish communities. Fishieries 6: 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  23. Koizumi, N. and Y. Matsumiya. 1997. Assessment of stream fish habitat based on Index of Biotic Integrity. Bulletin of the Japanese Society of Fisheries Oceanography 61: 144-156.
  24. Margalef, R 1958. Information theory in ecology. General Systematics 3: 36-71.
  25. Oberdorrff, T. and R.M. Hughes. 1992. Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Serine Basin, France. Hydrobiologia 228: 117-130. https://doi.org/10.1007/BF00006200
  26. Ohio EPA. 1989. Biological criteria for the protection of aquatic life. Vol. III, Standardized biological field sampling and laboratory method for assessing fish and macroinvertebrate communities. USA.
  27. Pielou, E.C. 1975. Ecological diversity. Wiley. New York. 165pp.
  28. Plafkin, J.L., M.T. Barbour, K.D. Porter, Gross, S.K. and RM. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrate and fish. EPA/444/4-89-001. Office of water regulations and standards. US EPA. Washington DC, USA.
  29. Shannon, C.E. and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana.
  30. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688 pp. https://doi.org/10.1038/163688a0
  31. Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions 38: 913-920. https://doi.org/10.1029/TR038i006p00913
  32. U.S. EPA. 1993. Fish field and laboratory methods for evaluating the biological integrity of surface waters. EPA 600-R-92-111. Environmental Monitoring systems Laboratory- Cincinnati office of Modeling, Monitoring systems, and quality assurance Office of Research Development, U.S. EPA, Cincinnati, Ohio 45268, USA.
  33. U.S. EPA 2002. Summary of biological assessment programs and biocriteria development for states, tribes, territories, and interstate commissions: streams and wadable river. EPA-822-R-02-048. U.S. EPA, USA.